|
- C. Hovater, R. Bachimanchi, E. Daly, M.A. Drury, L.E. Farrish, J. Gubeli, N.A. Huque, K. Jordan, M.E. Joyce, L.K. King, M. Marchlik, W. Moore, T.E. Plawski, A.D. Solopova, C.M. Wilson
JLab, Newport News, Virginia, USA
- A.L. Benwell, C. Bianchini, D. Gonnella, S.L. Hoobler, K.J. Mattison, J. Nelson, A. Ratti, B.H. Ripman, S. Saraf, L.M. Zacarias
SLAC, Menlo Park, California, USA
- L.R. Doolittle, S. Paiagua, C. Serrano
LBNL, Berkeley, California, USA
|
|
|
The JLab Low Energy Recirculating Facility, LERF, has been modified to support concurrent testing of two LCLS-II cryomodules. The cryomodules are installed in a similar fashion as they would be in the L1 section of the LCLS-II linac, including the floor slope and using all of the LCLS-II hardware and controls for cryomodule cryogenics, vacuum, and RF (SSA and LLRF). From the start, it was intended to use LCLS-II electronics and EPICS software controls for cryomodule testing. In affect the LERF test facility becomes the first opportunity to commission and operate the LCLS-II LINAC hardware and software controls. Support for specific cryomodule high level test applications like Q0 and HOMs measurements, are being developed from the basic cryomodule control suite. To support the testing, 2 K He is supplied from the CEBAF south linac cryogenic system, where care must be taken when using the LERF test facility to not upset the CEBAF cryogenics plant. This paper discusses the commissioning of the hardware and software development for testing the first two LCLS-II cryomodules.
|
|