Author: Matheson, B.
Paper Title Page
MOP076 Fundamental Power Coupler Design for a 325 MHz Balloon SSR Cavity 252
 
  • R.E. Laxdal, Y. Ma, B. Matheson, B.S. Waraich, Z.Y. Yao, V. Zvyagintsev
    TRIUMF, Vancouver, Canada
 
  TRIUMF has designed, fabricated and tested the first balloon variant of the single spoke resonator at 325 MHz and β=0.3. TRIUMF has also designed a 6 kW fundamental power coupler as part of the development. The design of the coupler will be presented.  
poster icon Poster MOP076 [1.282 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-SRF2019-MOP076  
About • paper received ※ 24 June 2019       paper accepted ※ 30 June 2019       issue date ※ 14 August 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUP106 Mechanical Tuner for a 325 MHz Balloon Single Spoke Resonator 730
 
  • R.E. Laxdal, J.J. Keir, B. Matheson, N. Muller, Z.Y. Yao
    TRIUMF, Vancouver, Canada
 
  TRIUMF has designed, fabricated and tested the first balloon variant of the single spoke resonator at 325 MHz and β=0.3. TRIUMF has also designed and built a mechanical tuner as part of the development. The tuner employs a nutcracker lever pressing at the beam ports driven by a scissor jack. The scissor is actuated through a tube coupling to a warm ball-screw and servo-motor located outside the cryostat. The design and warm tests of the tuner will be presented.  
poster icon Poster TUP106 [1.089 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-SRF2019-TUP106  
About • paper received ※ 23 June 2019       paper accepted ※ 30 June 2019       issue date ※ 14 August 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THP047 Progress of TRIUMF Beta-SRF Facility for Novel SRF Materials 964
SUSP003   use link to see paper's listing under its alternate paper code  
 
  • E. Thoeng
    UBC & TRIUMF, Vancouver, British Columbia, Canada
  • R.A. Baartman, P. Kolb, R.E. Laxdal, B. Matheson, G. Morris, N. Muller, S. Saminathan
    TRIUMF, Vancouver, Canada
  • T. Junginger
    UVIC, Victoria, Canada
 
  Funding: NSERC (Natural Sciences and Engineering Research Council of Canada)
SRF cavities made with bulk Nb have been the backbone of high-power modern linear accelerators. Demands for higher energy and more efficient linear accelerators, however, have strained the capabilities of bulk Nb close to its fundamental limit. Several routes have been proposed using thin film novel superconductors (e.g. Nb3Sn), SIS multilayer, and N-doping. Beta-NMR techniques are more suitable for the characterization of Meissner state in these materials, due to the capability of soft-landing radioactive ions on the nanometer scale of London penetration depth, as compared to micrometer probe of the muSR technique. Upgrade of the existing beta-NQR beamline, combined with the capability of high parallel magnetic field (200 mT) are the scope of the beta-SRF facility which has been fully funded. All hardware required for the upgrade has also been procured. The status of the commissioning, which is currently in phase I, is reported here, together with the future schedule of phase II with the fully installed beta-SRF beamline. Finally, the detail layout of the completed beamline and sample requirements will be included in this paper which might be of interest of future users.
 
poster icon Poster THP047 [1.372 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-SRF2019-THP047  
About • paper received ※ 23 June 2019       paper accepted ※ 30 June 2019       issue date ※ 14 August 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)