Author: Hartung, W.
Paper Title Page
MOFAA3 The FRIB SC-Linac - Installation and Phased Commissioning 12
 
  • J. Wei, H. Ao, S. Beher, B. Bird, N.K. Bultman, F. Casagrande, D. Chabot, W. Chang, S. Cogan, C. Compton, J. Curtin, K.D. Davidson, E. Daykin, K. Elliott, A. Facco, A. Fila, V. Ganni, A. Ganshyn, P.E. Gibson, T. Glasmacher, I. Grender, W. Hartung, L. Hodges, K. Holland, H.-C. Hseuh, A. Hussain, M. Ikegami, S. Jones, T. Kanemura, S.H. Kim, P. Knudsen, M.G. Konrad, J. LeTourneau, Z. Li, S.M. Lidia, G. Machicoane, P. Manwiller, F. Marti, T. Maruta, E.S. Metzgar, S.J. Miller, D.G. Morris, C. Nguyen, K. Openlander, P.N. Ostroumov, A.S. Plastun, J.T. Popielarski, L. Popielarski, J. Priller, M.A. Reaume, H.T. Ren, T. Russo, K. Saito, M. Shuptar, J.W. Stetson, D.R. Victory, R. Walker, X. Wang, J.D. Wenstrom, M. Wright, M. Xu, T. Xu, Y. Yamazaki, Q. Zhao, S. Zhao
    FRIB, East Lansing, Michigan, USA
  • K. Dixon, M. Wiseman
    JLab, Newport News, Virginia, USA
  • A. Facco
    INFN/LNL, Legnaro (PD), Italy
  • K. Hosoyama
    KEK, Ibaraki, Japan
  • M.P. Kelly
    ANL, Lemont, Illinois, USA
  • R.E. Laxdal
    TRIUMF, Vancouver, Canada
 
  Funding: Work supported by the U.S. Department of Energy Office of Science under Cooperative Agreement DE-SC0000661.
The Facility for Rare Isotope Beams (FRIB) superconducting (SC) driver linac is designed to accelerate all stable ions including uranium to energies above 200 MeV/u primarily with 46 cryomodules containing 324 quarter-wave resonators (QWR) and half-wave (HWR) resonators. With the newly commissioned helium refrigeration system supplying liquid helium to the QWR and solenoids, heavy ion beams including Ne, Ar, Kr and Xe were accelerated to the charge stripper location above 20 MeV/u with the first linac segment consisting of 15 cryomodules containing 104 QWRs of β=0.041 and 0.085 and 39 solenoids. Installation of cryomodules with β=0.29 and 0.53 HWRs is proceeding in parallel. Development of β=0.65 elliptical resonators is on-going supporting the FRIB energy upgrade to 400 MeV/u. This paper summarizes the SC-linac installation and phased commissioning status that is on schedule and on budget to the FRIB project.
 
slides icon Slides MOFAA3 [46.571 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-SRF2019-MOFAA3  
About • paper received ※ 23 June 2019       paper accepted ※ 30 June 2019       issue date ※ 14 August 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOP005 The Facility for Rare Isotope Beams Superconducting Cavity Production Status and Findings Concerning Surface Defects 31
 
  • C. Compton
    NSCL, East Lansing, Michigan, USA
  • H. Ao, J. Asciutto, K. Elliott, W. Hartung, S.H. Kim, E.S. Metzgar, S.J. Miller, J.T. Popielarski, L. Popielarski, K. Saito, T. Xu
    FRIB, East Lansing, Michigan, USA
  • J. Craft
    SLAC, Menlo Park, California, USA
 
  Funding: This material is based upon work supported by the U.S. Department of Energy Office of Science under Cooperative Agreement DE-SC0000661
The Facility for Rare Isotope Beams (FRIB), located on the campus of Michigan State University (MSU) will require 324 Superconducting Radio Frequency (SRF) cavities in the driver linac. Four types of cavities of two classes, quarter-wave (β=0.041 and 0.085) and half-wave (β=0.29 and 0.53), will be housed in 46 cryomodules. To date, FRIB has tested over 300 cavities in vertical Dewar tests as part of the certification procedures. Incoming cavities, fabricated in industry, are sequenced through acceptance inspection and checked for non-conformance. If accepted, the cavities are processed, assembled onto a vertical test stand, and cold tested. A large database of cavity surface images has been collected with the aid of a borescope camera. Borescope inspection is a standard step that is performed at incoming inspection, post-acid bulk etch, and after failed tests (if necessary) for each cavity, in order to locate any non-conformances. Findings of surface defects relating to degraded cavity performance will be presented.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-SRF2019-MOP005  
About • paper received ※ 02 July 2019       paper accepted ※ 13 August 2019       issue date ※ 14 August 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOP072 FRIB Solenoid Package in Cryomodule and Local Magnetic Shield 235
 
  • K. Saito, H. Ao, B. Bird, R. Bliton, N.K. Bultman, F. Casagrande, C. Compton, J. Curtin, K. Elliott, A. Ganshyn, W. Hartung, L. Hodges, K. Holland, S.H. Kim, S.M. Lidia, D. Luo, S.J. Miller, D.G. Morris, L. Nguyen, D. Norton, J.T. Popielarski, L. Popielarski, T. Russo, J.F. Schwartz, S.M. Shanab, M. Shuptar, D.R. Victory, C. Wei, J. Wei, M. Xu, T. Xu, Y. Yamazaki, C. Zhang, Q. Zhao
    FRIB, East Lansing, Michigan, USA
  • A. Facco
    INFN/LNL, Legnaro (PD), Italy
  • K. Hosoyama, M. Masuzawa
    KEK, Ibaraki, Japan
  • R.E. Laxdal
    TRIUMF, Vancouver, Canada
 
  Funding: U.S. Department of Energy Office of Science under Cooperative Agreement DE -SC0000661
FRIB cryomodule design has a feature: solenoid package(s) and local magnetic shields in the cryomodule. In this design, exposing SRF cavities to a very strong fringe field from the solenoid is concerned. A tangled issue between solenoid package design and magnetic shield one has to be resolved. FRIB made intensive studies, designed, prototyped, validated the solenoid packages and magnetic shields, and finally certified them in the bunker test. This paper reports activity results, and LS1 commissioning results in FRIB tunnel. This is a FRIB success story.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-SRF2019-MOP072  
About • paper received ※ 24 June 2019       paper accepted ※ 14 August 2019       issue date ※ 14 August 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUP093 Summary of FRIB Cavity Processing in the SRF Coldmass Processing Facility and Lessons Learned 680
 
  • E.S. Metzgar, B.W. Barker, K. Elliott, W. Hartung, L. Popielarski, G.V. Simpson, D.R. Victory, J.D. Whaley
    FRIB, East Lansing, Michigan, USA
 
  Funding: Work supported by the U.S. Department of Energy Office of Science under Cooperative Agreement DE-SC0000661 and the National Science Foundation under Cooperative Agreement PHY-1102511.
Baseline coldmass production for the linear particle accelerator at the Facility for Rare Isotope Beams (FRIB) is nearing completion. This paper will review the processing of cavities through the FRIB superconducting radio frequency (SRF) coldmass production facility focusing on chemical processing and high-pressure rinsing. Key processing data will be compiled and correlations between processing variables and cavity RF testing results will be examined.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-SRF2019-TUP093  
About • paper received ※ 22 June 2019       paper accepted ※ 29 June 2019       issue date ※ 14 August 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WETEA5 FRIBCavity and Cryomodule Performance, Comparison with the Design and Lessons Learned 742
 
  • S.J. Miller, H. Ao, B. Bird, B. Bullock, N.K. Bultman, F. Casagrande, C. Compton, J. Curtin, K. Elliott, A. Facco, V. Ganni, I. Grender, W. Hartung, J.D. Hulbert, S.H. Kim, P. Manwiller, E.S. Metzgar, D.G. Morris, P.N. Ostroumov, J.T. Popielarski, L. Popielarski, M.A. Reaume, K. Saito, M. Shuptar, J. Simon, B.P. Tousignant, D.R. Victory, J. Wei, J.D. Wenstrom, K. Witgen, M. Xu, T. Xu
    FRIB, East Lansing, Michigan, USA
  • A. Facco
    INFN/LNL, Legnaro (PD), Italy
  • M.P. Kelly
    ANL, Lemont, Illinois, USA
  • M. Wiseman
    JLab, Newport News, Virginia, USA
 
  Funding: Work supported by the U.S. Department of Energy Office of Science under Cooperative Agreement DE-SC0000661 and the National Science Foundation under Cooperative Agreement PHY-1102511.
The superconducting driver linac for the Facility for Rare Isotope Beams (FRIB) requires the production of 46 cryomodules. Design is complete on all six cryomodule types which utilize four superconducting radio frequency (SRF) cavity designs and superconducting solenoids. The FRIB cryomodules utilize an innovative bottom up approach to achieve alignment tolerance and simplify production assembly. The cryomodule testing includes qualification of the resonator performance, fundamental power couplers, tuners, and cryogenic systems. FRIB beam commissioning has been performed on 15 cryomodules in the FRIB and validates the FRIB cryomodule bottom up assembly and alignment method. This paper will report the FRIB cryomodule design, performance, and the alignment results and their impact on beam commissioning.
 
slides icon Slides WETEA5 [14.640 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-SRF2019-WETEA5  
About • paper received ※ 21 June 2019       paper accepted ※ 29 June 2019       issue date ※ 14 August 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THP061 Performance of FRIB Production Quarter-Wave and Half-Wave Resonators in Dewar Certification Tests 1023
 
  • W. Hartung, W. Chang, S.H. Kim, D. Norton, J.T. Popielarski, K. Saito, J.F. Schwartz, T. Xu, C. Zhang
    FRIB, East Lansing, Michigan, USA
 
  The Facility for Rare Isotope Beams (FRIB) is under construction at Michigan State University (MSU). The FRIB superconducting driver linac will accelerate ion beams to 200 MeV per nucleon. The driver linac requires 104 quarter-wave resonators (QWRs, β = 0.041 and 0.085) and 220 half-wave resonators (HWRs, β = 0.29 and 0.54). The jacketed resonators are Dewar tested at MSU before installation into cryomodules. The cryomodules for β = 0.041, 0.085, and 0.29 have been completed and certified; 88% of the β = 0.54 HWRs have been certified (as of March 2019). Beam commissioning of the QWR cryomodules is in progress. The Dewar certification tests have provided valuable statistics on the performance of production QWRs and HWRs at 4.3 K and 2 K and on performance limits. Results will be presented.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-SRF2019-THP061  
About • paper received ※ 12 July 2019       paper accepted ※ 13 August 2019       issue date ※ 14 August 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THP062 Progress in FRIB Cryomodule Bunker Tests 1029
 
  • W. Chang, S. Caton, A. Ganshyn, W. Hartung, S.H. Kim, B. Laumer, H. Maniar, J.T. Popielarski, K. Saito, M. Xu, T. Xu, C. Zhang, S. Zhao
    FRIB, East Lansing, Michigan, USA
 
  Funding: Work supported by the U.S. Department of Energy Office of Science under Cooperative Agreement DE-SC0000661
The Facility for Rare Isotope Beams (FRIB) is under construction at Michigan State University (MSU). The FRIB superconducting driver linac will accelerate ion beams to 200 MeV per nucleon. The driver linac requires 104 quarter-wave resonators (QWRs, β = 0.041 and 0.085) and 220 half-wave resonators (HWRs, β = 0.29 and 0.54). The jacketed resonators are Dewar tested at MSU before installation into cryomodules. The cryomodules for β = 0.041, 0.085, and 0.29 have been completed and certified; 32 out of 49 cryomodules are certified via bunker test (as of March 2019). FRIB cryomodule needs 74 solenoid packages: 8-25 cm packages for 0.041 QWR CMs, 36-50 cm for 0.085 CMs, 12-50 cm for 0.29 CMs, and 18-50 cm for 0.53 CMs. The bunker certification completed 58 packages. All the magnets energized at FRIB goal (90 A/8 T for solenoid and 19 A/0.064 Tm for dipoles), all cavities tested at or above specified operating gradient. In this paper, we report the bunker test result.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-SRF2019-THP062  
About • paper received ※ 23 June 2019       paper accepted ※ 02 July 2019       issue date ※ 14 August 2019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)