Author: Tan, T.
Paper Title Page
MOPB007 Design of the Superconducting Quarter Wave Resonators for HIAF 59
 
  • C. Zhang, L. Chen, Q.W. Chu, H. Guo, Y. He, S.C. Huang, Y.L. Huang, T.C. Jiang, L. Li, Y.M. Li, F. Pan, T. Tan, R.X. Wang, A.D. Wu, Q.J. Wu, P.R. Xiong, W.M. Yue, S.H. Zhang, S.X. Zhang
    IMP/CAS, Lanzhou, People's Republic of China
 
  A heavy ion accelerator facility (HIAF) is under development in the Institute of Modern Physics. For the low energy superconducting accelerating section, two types of quarter wave resonators with frequency of 81.25 MHz and β of 0.05 and 0.10 have been proposed. The electro-magnetic design has been optimized in order to reach the high accelerating voltage, and the optimization also included the drift tube face tilting to compensate for the beam steering caused by the asymmetry in the quarter wave resonator geometry.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-SRF2017-MOPB007  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPB086 Study on Local Chemical Treatment for Recovery From Surface Oxidation by HPR Process on SRF Cavities 592
 
  • H. Guo, Y. He, Y.M. Li, T. Tan, A.D. Wu, P.R. Xiong, Z.M. You, W.M. Yue, S.H. Zhang
    IMP/CAS, Lanzhou, People's Republic of China
 
  High pressure rinsing (HPR) with ultra-pure water (UPW) is the last step which is commonly used for SRF cavities cleaning. The serious surface damage will be caused due to the failure of the distance control between the jet and cavity surface or the breakdown of the jet rotation. The surface of taper HWR cavities which are used for CIADS project was damaged in HPR process. Two methods were used for surface recovery and the result will be presented in this paper.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-SRF2017-TUPB086  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)