Paper | Title | Page |
---|---|---|
TUXAA01 | CEPC SRF System Design and Challenges | 332 |
|
||
Funding: Work supported by National Key Programme for S&T Research and Development of China (Grant NO.: 2016YFA0400400) CEPC is a 100 km circular electron positron collider operating at 90-240 GeV center-of-mass energy of Z, W and Higgs bosons. CEPC and its successor SPPC, a 100 TeV center-of-mass super proton-proton collider, will ensure the elementary particle physics a vibrant field for decades to come. The conceptual design report (CDR) of CEPC will be completed in the end of 2017 as an important step to move the project forward. In this contribution, CEPC SRF system CDR design and challenges will be introduced, including the system layout and parameter choices, configuration at different operation energies, transient beam loading and its compensation, cavity fundamental mode (FM) and higher order mode (HOM) induced coupled bunch instabilities (CBI) and the beam feedback requirement, etc. The SRF technology R&D plan and progress as well as the SRF infrastructure and industrialization plan are discussed at last. |
||
![]() |
Slides TUXAA01 [9.124 MB] | |
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-SRF2017-TUXAA01 | |
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |
TUPB036 | R&D of CEPC Cavity | 463 |
|
||
Funding: This study was supported by National Key Programme for S&T Research and Development (Grant NO.: 2016YFA0400400) and National Natural Science Foundation of China (Grant NO.: 11505197) CEPC will use 650 MHz cavities for the collider (Main Ring) and 1.3 GHz cavities for the Booster. Each booster cryomodule contains eight 1.3 GHz 9-cell cavities, which is similar as LCLS-II. Each collider cryomodule contains six 650 MHz 2-cell cavities, which is totally new. So our R&D of CEPC cavity mainly focuses on the 650 MHz 2-cell cavity. A cryomodule which consists of two 650 MHz 2-cell cavities has began in early 2017. In this thesis, the RF and mechanical design is displayed with Helium Vessel. Besides, multipacting is analyzed. In order to achieve high Q, N-doping is also studied. |
||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-SRF2017-TUPB036 | |
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |