Author: Chouhan, V.
Paper Title Page
TUPB073 Vertical Electro-polishing Collaboration Between Cornell, KEK, and Marui Galvanizing Co. Ltd 563
 
  • F. Furuta, M. Ge, T. Gruber, J.J. Kaufman, M. Liepe, J. Sears
    Cornell University (CLASSE), Cornell Laboratory for Accelerator-Based Sciences and Education, Ithaca, New York, USA
  • V. Chouhan, Y.I. Ida, K.N. Nii, T.Y. Yamaguchi
    MGH, Hyogo-ken, Japan
  • H. Hayano, S. Kato, T. Saeki
    KEK, Ibaraki, Japan
 
  Cornell's SRF group, KEK, and Marui Galvanizing Co. Ltd (MGI) have collaborated since 2014 on Vertical Electro-Polishing (VEP) R&D as a part of a US/Japan Program for Cooperation in High Energy Physics. We have focused on an improvement of removal uniformity during the VEP process. MGI and KEK have developed their original VEP cathode named i-cathode Ninja®, which has four retractable wing-shape parts per cell. Cornell processed one single cell cavity with VEP using this cathode and performed a vertical test. KEK also provided one 9-cell cavity to Cornell. Cornell then performed surface treatments including Cornell VEP and RF test on this 9-cell cavity. The progress by the VEP collaboration and RF test results are presented in this paper.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-SRF2017-TUPB073  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPB091 Study on Vertical Electropolising of 9-cell Niobium Coupon Cavity 602
 
  • V. Chouhan, Y.I. Ida, K.N. Nii, T.Y. Yamaguchi
    MGH, Hyogo-ken, Japan
  • H. Hayano, S. Kato, H. Monjushiro, T. Saeki, M. Sawabe
    KEK, Ibaraki, Japan
 
  Authors report a study on vertical electropolishing (VEP) carried out for a 1.3 GHz 9-cell niobium (Nb) coupon cavity using a unique cathode namely 'Ninja Cathode'. The design of the cathode for VEP of a 9-cell cavity was based on the Ninja cathode used for 1-cell cavity since the 1-cell Ninja cathode was found effective to reduce longitudinal asymmetry in material removal and to obtain a smooth surface of a 1-cell cavity. Moreover, 1-cell Nb cavities after being treated in VEP using the Ninja cathode showed good performance in vertical RF tests. The 9-cell coupon cavity used in this study was designed to have totally nine coupons set on the iris and equator positions of the first, fifth and ninth cells. These three cells contain viewports as well at their upper and lower iris positions. Measurement of currents from the individual coupons and in-situ observation are possible using the cavity to understand EP phenomenon at different locations of the cavity. VEP results, which include removal thicknesses at different positions of the cavity and surface study of the coupons, are discussed.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-SRF2017-TUPB091  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPB092 Analysis of Niobium Surface and Generated Particles in Vertical Electropolishing of Single-cell Coupon Cavity 607
 
  • V. Chouhan, Y.I. Ida, K.N. Nii, T.Y. Yamaguchi
    MGH, Hyogo-ken, Japan
  • H. Hayano, S. Kato, H. Monjushiro, T. Saeki, M. Sawabe
    KEK, Ibaraki, Japan
 
  In our previous studies, we have reported parameter investigation for vertical electropolishing (VEP) of 1-cell niobium (Nb) tesla/ILC type cavities using a Ninja cathode. A 1-cell coupon cavity containing six Nb disk coupons at its different positions was found effective to reduce time and cost to establish an optimized VEP recipe. In this work, we present surface analyses of VEPed Nb coupon surfaces using scanning electron microscope (SEM), energy dispersive x-ray spectroscopy (EDX) and x-ray photoelectron spectroscopy (XPS). Surfaces contained micro- and nano-sized particles which were found with random distributions and different number densities on the beam pipe and iris coupons. Surfaces of equator coupons were found to have relatively less number of particles or almost clean. To analyze particles, a few particles were picked-up from a coupon surface using a tungsten tip under SEM and analyzed with EDX while the coupon was moved out from the SEM chamber to avoid its effect in EDX spectra. The particles were confirmed as oxygen-rich niobium and contained fluorine and carbon also. XPS analysis of the coupon surfaces was also carried out for further study of surface chemistry.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-SRF2017-TUPB092  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPB093 Nb Single-cell Cavity Vertical Electro-polishing with Ninja Cathode and Evaluation of its Accelerating Gradient 612
 
  • K.N. Nii, V. Chouhan, Y.I. Ida, T.Y. Yamaguchi
    MGH, Hyogo-ken, Japan
  • P. Carbonnier, Y. Gasser, L. Maurice
    CEA/IRFU, Gif-sur-Yvette, France
  • F. Éozénou, C. Servouin
    CEA/DSM/IRFU, France
  • H. Hayano, S. Kato, H. Monjushiro, T. Saeki, M. Sawabe
    KEK, Ibaraki, Japan
  • Th. Proslier
    CEA/DRF/IRFU, Gif-sur-Yvette, France
 
  Marui Galvanizing Co. Ltd. has been improving Vertical Electro-Polishing (VEP) technology for Nb superconducting RF cavity in collaboration with KEK. In this collaboration, we developed a unique cathode namely Ninja cathode for VEP treatment of Nb cavities. We have already reported that longitudinal symmetry in niobium removal and surface state of a single cell cavity were improved after VEP using the Ninja cathode. In this article, we report a result of accelerating gradient evaluation for 1.3 GHz single cell RF cavity after VEP with Ninja cathode in collaboration with KEK and CEA Saclay.  
poster icon Poster TUPB093 [0.704 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-SRF2017-TUPB093  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)