A  B  C  D  E  F  G  H  I  J  K  L  M  N  O  P  Q  R  S  T  U  V  W  X  Y  Z  

Liepe M.

PaperTitlePage
MO202Status of the Cornell ERL injector cryomodule9
 
  • M. Liepe, S. Belomestnykh, E. Chojnacki, V. Medjidzade, H. Padamsee, P. Quigley, J. Sears, V. Shemelin, V. Veshcherevich
    CLASSE, Cornell University
 
 Cornell University is developing and fabricating a SRF injector cryomodule for the acceleration of the high current (100 mA) beam in the Cornell ERL prototype and ERL light source. Major challenges include emittance preservation of the low energy, ultra low emittance beam, cw cavity operation, and strong HOM damping with efficient HOM power extraction. Axial symmetry of HOM absorbers, together with two symmetrically placed input couplers per cavity, avoid transverse on-axis fields, which would cause emittance growth. Fabrication of five 2-cell niobium cavities and coaxial blade tuners, ten twin high power input couplers, and six beam line HOM absorbers has finished. The injector cryomodule is presently under assembly at Cornell University with beam test planned for early 2008. In this paper we report on the cryomodule fabrication and assembly status. 
slides iconSlides(PDF) 
WEP33Realisation of a prototype superconducting CW cavity and cryomodule for energy recovery545
 
  • P. A. McIntosh, R. Bate, C. D. Beard, M. Cordwell, D. M. Dykes, S. Pattalwar, J. Strachan, E. Wooldridge
    STFC Daresbury Laboratory
  • S. Belomestnykh, M. Liepe, H. Padamsee
    Cornell University
  • A. Buechner, F. Gabriel, P. Michel
    FZR Rossendorf
  • T. Kimura, T. I. Smith
    Stanford University
  • J. Byrd, J. N. Corlett, D. Li, S. Lidia
    LBNL
 
 For Energy Recovery applications, the requirement for high-Q accelerating structures, operating in CW mode, at large beam currents, with precise phase & amplitude stability and modest accelerating gradients are all fundamental in achieving intense photon fluxes from the synchronised FEL insertion devices. Both Daresbury Laboratory and Cornell University are developing designs for advanced Energy Recovery Linac (ERL) facilities which require accelerating Linacs which meet such demanding criteria. The specification for the main ERL accelerator for both facilities dictates a modest accelerating gradient of 20 MV/m, at a Qo of better than 10^10, with a Qext of up to 10^8. A collaborative R&D program has been set-up to design and fabricate a 'proof-of- principle' cryomodule (which is well underway) that can be tested on ERLP at Daresbury and also on the Cornell ERL injector. This paper details the new cryomodule design, provides an insight to the design solutions employed and reports on the present status of the project.