Paper | Title | Page |
---|---|---|
MOPSA29 | Applied Research Stations and New Beam Transfer Lines at the NICA Accelerator Complex | 172 |
|
||
Applied research at the NICA accelerator complex include the following areas that are under construction: single event effects testing on capsulated microchips (energy range of 150-500 MeV/n) at the Irradiation Setup for Components of Radioelectronic Apparature (ISCRA) and on decapsulated microchips (ion energy up to 3,2 MeV/n) at the Station of CHip Irradiation (SOCHI), space radiobiological research and modelling of influence of heavy charged particles on cognitive functions of the brain of small laboratory animals and primates (ener-gy range 500-1000 MeV/n) at the Setup for Investigation of Medical Biological Objects (SIMBO). Description of main systems and beam parameters at the ISCRA, SOCHI and SIMBO applied research stations is presented. The new beam transfer lines from the Nuclotron to ISCRA and SIMBO stations, and from HILAC to SOCHI station are being constructed. Description of the transfer lines layout, the magnets and diagnostic detectors, results of the beam dynamics simulations are described given. | ||
DOI • | reference for this paper ※ doi:10.18429/JACoW-RuPAC2021-MOPSA29 | |
About • | Received ※ 01 October 2021 — Revised ※ 02 October 2021 — Accepted ※ 09 October 2021 — Issued ※ 13 October 2021 | |
Cite • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |
MOPSA32 |
Sub Channel SOCHI of the NICA Accelerator Complex. Design Overview and Rigging at the NICA Accelerator Complex. Details of the Vacuum System | |
|
||
As part of the tasks set, the NICA complex provides an additional channel with the main task to irradiate the microchip with beams of heavy ions with an energy of 3.2 MeV/n. The channel is based on the HILAC heavy-ion linear accelerator. The poster presents the main design features and original solutions necessary for the implementation of this project. The milestones are the special vacuum requirements and the limited space for the installation of the entire system. | ||
Cite • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |
WEA01 | Beam Transfer Systems of NICA Facility: from HILAC to Booster | 61 |
|
||
New accelerator complex is being constructed by Joint Institute for Nuclear Research (Dubna, Russia) in frame of Nuclotron-based Ion Collider fAcility (NICA) project. The NICA layout includes new Booster and existing Nuclotron synchrotrons as parts of the heavy ion injection chain of the NICA Collider as well as beam transport lines which are the important link for the whole accelerator facility. Designs and current status of beam transfer systems in the beginning part of the NICA complex, which are partially commissioned, are presented in this paper. | ||
![]() |
Slides WEA01 [26.886 MB] | |
DOI • | reference for this paper ※ doi:10.18429/JACoW-RuPAC2021-WEA01 | |
About • | Received ※ 07 October 2021 — Revised ※ 08 October 2021 — Accepted ※ 13 October 2021 — Issued ※ 22 October 2021 | |
Cite • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |