Author: Sidorov, A.I.
Paper Title Page
FRCAMH05 Booster Synchrotron at NICA Accelerator Complex 160
 
  • A. Tuzikov, O.I. Brovko, A.V. Butenko, A.V. Eliseev, A.A. Fateev, V. Karpinsky, H.G. Khodzhibagiyan, S.A. Kostromin, I.N. Meshkov, V.A. Mikhaylov, A.O. Sidorin, A.I. Sidorov, A.V. Smirnov, E. Syresin, G.V. Trubnikov, V. Volkov
    JINR, Dubna, Moscow Region, Russia
  • O. Anchugov, V.A. Kiselev, D.A. Shvedov, A.N. Zhuravlev
    BINP SB RAS, Novosibirsk, Russia
 
  NICA is the new complex being constructed on the JINR aimed to provide collider experiments with ions up to aurum at energy of 4.5x4.5 GeV/u. The NICA layout includes 600 MeV/u Booster synchrotron as a part of the injection chain of the NICA Collider. The main goals of the Booster are the following: accumulation of 4E109 Au31+ ions; acceleration of the heavy ions up to energy required for effective stripping; forming of the required beam emittance with electron cooling system. The layout makes it possible to place the Booster having 210.96 m circumference and four fold symmetry lattice inside the yoke of the former Synchrophasotron. The features of the Booster, its main systems, their parameters and current status are presented in this paper.  
slides icon Slides FRCAMH05 [16.830 MB]  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPSB037 Beam Transfer From Heavy-Ion Linear Accelerator HILAC Into Booster of NICA Accelerator Complex 443
 
  • A. Tuzikov, A.V. Butenko, A.A. Fateev, S.Yu. Kolesnikov, I.N. Meshkov, V.A. Mikhaylov, V.S. Shvetsov, A.O. Sidorin, A.I. Sidorov, G.V. Trubnikov, V. Volkov
    JINR, Dubna, Moscow Region, Russia
 
  Designs of systems of ion beam transfer from the linear accelerator HILAC into the Booster of the NICA accelerator complex (JINR, Dubna) including the transport beam line HILAC-Booster and the beam injection system of the Booster are considered in the report. The proposed systems provide multivariant injection for accumulation of beams in the Booster with required intensity. Special attention is paid to various aspects of beam dynamics during its transfer. Main methods of beam injection into the Booster are described. These are single-turn, multiturn and multiple injection ones. Results of beam dynamics simulations are presented. Status of technical design and manufacturing of the systems' equipment is also highlighted.  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)