Author: Zemlyansky, I.M.
Paper Title Page
TUY01 Status and Perspectives of the VEPP-2000 Complex 6
 
  • Yu. A. Rogovsky, D.E. Berkaev, A.S. Kasaev, I. Koop, A.N. Kyrpotin, A.P. Lysenko, E. Perevedentsev, V.P. Prosvetov, A.L. Romanov, A.I. Senchenko, P.Yu. Shatunov, Y.M. Shatunov, D.B. Shwartz, A.N. Skrinsky, I.M. Zemlyansky, Yu.M. Zharinov
    BINP SB RAS, Novosibirsk, Russia
  • Yu. A. Rogovsky
    NSU, Novosibirsk, Russia
 
  The VEPP-2000 is a modern electron-positron collider at BINP. Last season in 2012–2013 was dedicated to the energy range of 160520 MeV per beam. The application of round colliding beams concept along with the accurate orbit and lattice correction yielded the high peak luminosity of 1.21031 cm-2s−1 at 500 MeV with average luminosity of 0.91031 cm-2s−1 per run. The peak luminosity limited only by beam-beam effects, while average luminosity – by present lack of positrons in whole energy range of 1601000 MeV. To perform high luminosity at high energies with small dead time the top-up injection is needed. At present new electron and positron injection complex at BINP is commissioned and ready to feed VEPP-2000 collider with intensive beams with energy of 450 MeV. Last calendar 2014 year was dedicated to the full/partial upgrade of complex's main parts.  
slides icon Slides TUY01 [4.152 MB]  
 
FRCA03 Electron and Positron Beams Transportation Channels to BINP Colliders 462
 
  • I.M. Zemlyansky, D.E. Berkaev, V.A. Kiselev, I. Koop, A.V. Otboev, A.M. Semenov, A.A. Starostenko
    BINP SB RAS, Novosibirsk, Russia
 
  Funding: Ministry of Education and Science of the Russian Federation, NSh-4860.2014.2
The overview of electron and positron beams transportation channels from injection complex VEPP-5 to VEPP-4M and VEPP-2000 colliders is presented. The last one is discussed in details. The lattice functions, magnetic elements, beam diagnostic system ans vacuum system are presented. The beam commissioning is scheduled to the end of the year.
 
slides icon Slides FRCA03 [1.039 MB]