Status and Perspectives of the VEPP-2000 complex

Yu. Rogovsky on behalf of VEPP-2000 team

«XXIV Russian particle accelerators conference RUPAC 2014» October 6–10, 2014, Obninsk, Russia

Outline

- Round Beam Conception (short)
- Vepp-2000 complex as of middle 2013
- Vepp-2000 equipment for operations
- Lattice/beam/energy measurements
- HEP experiments 2012-2013
- Upgrade motivation
- Currrent upgrade status
- Conclusion

Motivation of the «Round Beam» use

Luminosity increase scenario:

✓ Number of bunches (i.e. collision frequency)

Bunch-by-bunch luminosity

Round Beams:

 $\xi \geq$

✓ Geometric factor:

✓ Beam-beam limit enhancement:✓ IBS for low energy? Better life time!

The concept of Round Colliding Beams

Axial symmetry of counter beam force together with x-y symmetry of transfer matrix should provide additional integral of motion (angular momentum $M_z = x'y - xy'$). Particle dynamics remains nonlinear, but becomes 1D.

Lattice requirements:

- Head-on collisions
- Small and equal β -functions at IP:
- Equal beam emittances:
- Equal fractional parts of betatron tunes:

V.V.Danilov et al., EPAC'96, Barcelona, p.1149, (1996)

VEPP-2000 layout & parameters

Main parameters @ 1GeV

Circumference	24.388 m	Energy	160 ÷ 1000 MeV
Number of bunches	1	Number of particles	1.0×10^{11}
Betatron tunes	4.1/2.1	Beta-functions @ IP	8.5 cm
₅ Beam-beam param.	0.1	Luminosity	$1.0 \times 10^{32} \text{ cm}^{-2} \text{s}^{-1}$

VEPP-2000 @ begin of 2013

Round Beams Options for VEPP-2000

Magnetic structure and diagnostics

Beam orbit/profile measurements: CCD

Crucial importance of optics correction

Beam orbit/tune measurements: fast BPM

- TBT resolution: ~10 µm @ 50 mA,
 - ~50 µm @ 1 mA
- Syst. bandw.: ~10 Hz @ 1024 avr.
 - ~2 Hz @ 8192 tbt
- Tune measurements
- Orbit measurements
- Specific beam measurements

Compton backscattering at VEPP-2000

M.N. Achasov et al. arXiv:1211.0103v1 [physics.acc-ph] 1 Nov 2012

Beam Energy measurement: all methods

• HEP requirements $\delta E/E=10^{-4}$

- Dipole magnetic field control.
 - 8 magnets \otimes 2 NMR probes. Fast/Online control.
 - Jitter 0.2×10^{-4} , Systemathic 10^{-3}
 - Absolute calibration well-known particles (mesons) cross sections resonances measurements:

 φ (1019.455 ± 0.020MeV), ω (782.65 ± 0.12MeV).
- Laser beam Compton backscattering on electron bunch.
 - •Tested in early 2012. Stasble operations end 2012.
 - Relativelly high bunch intencity (20 mA).
- Resonance dopolarization by external field.
 - •High resolution (δ E/E<10⁻⁵)
 - Special working regime («warm» lattice no sol./KMD)

time, hours

Bunch length measurements: Phi-dissector

Bunch lengtherning.... |Z/n|

Bunch lengtherning... loss factor

Beam-beam parameter crosscheck

Experimental runs: RHO/OMEGA 2013

Luminosity vs. beam energy 2010-2013

Upgrade motivation: luminosity restrictions

- 1. Dead time
- 2. Extremely hard task: acceleration of colliding beams at bb-threshold
- 3. Unachievable bb-threshold at energy higher than injection value!

 $800 \to 1000 \text{ MeV} -20 \div -35\%$

 $L = \int_{v_e}^{v_e \varepsilon} \frac{\varepsilon}{\varepsilon}$

Upgrade milestones...

- 0. High intensity beams from injection complex (A.Starostenko talk).
- 1. Beam transport to VEPP-2000 complex (K-500) (I.Zemlyansky talk).
- 2. Booster reconstruction for operation up to 1.0 GeV.
- 3. Booster-VEPP-2000 channel modernization (extraction 1.0 GeV).
- 4. VEPP-2000 ring modernization for top energy injection on 1.0 GeV.

	2013					2014													
	Inl	Aug	Sep	Oct	Nov	Dec	lan	Feb	Mar	Apr	May	unr	Int	Aug	Sep	Oct	von	Dec	Jan
VEPP-5																			
Channel K-500																			
BEP upgrade																			
BEP-VEPP2000 channels																			
ВЭПП-2000																			
- Manufacturing				- Assembling						- (commissioning								

Upgrade parts 2: booster BEP

- 2.1 New injection magnet.
- 2.2 New RF cavity and RF system modifications.
- 2.3 Bending magnets (12+1) modifications: gap=40 MM \Rightarrow 32 MM, 26 K Γ c.
 - 2.3.1 New correction coils.
- 2.4 Quadrupole (24) modifications: G ⇒ 5 kGs/cm, + sextupole strength.
 2.4.1 New coils for F-lenses.
- 2.5 Vacuum chamber modifications.
- 2.6 New BUMP (2) magnets + its vacuum chambers.
- 2.7 New DCCT and BPM.

Upgrade results 2: RF + vacuum chamber

Energy loss @ 1.0 GeV: **70 keV** $f_{rf} = 174.376$ MHz harminic numb = 13

 $U_{rf} = 110 \text{ kV}$

- Shape modifications for D-lenses and dipole magnets
- Profilactics

Upgrade results 2: dipole measurements

Upgrade resuls 2: dipole magnets reconstr.

- 1) Установка накладок толщиной 4 мм на плоскость полюсов (межполюсный зазор становится 32 мм).
- Установка торцевых накладок на полюс, толщиной 12 мм, для удлинения магнита. Для этого из обмоток извлекаются вклеенные внутрь корректирующие катушки.
- 3) Изготовление новых корректирующих обмоток на ярме магнитопровода.
- Заужение полюса со 120 мм до 90 мм, для концентрации потока и увеличении поля.
- 5) Установка изогнутых пластин толщиной 50 мм на внутренний радиус ярма магнита, для снижения насыщения магнитопровода.

Upgrade results 2: small quadrupole D-lens

- Consistent power with other elements and dipole magnets.
- Complicate nonsymmetric pole profile: quad. + sext.

Upgrade results 2: big quadrupole F-lens

$84 \text{ mm} \Rightarrow 74.8 \text{ mm}$

QD sextupole component saturation

Thin sextupole corrector field influence in integral: -3.5%

Booster BEP @ 28.08.2013

Booster BEP @ 03.10.2014

«Hole» in experimental hall

– Приобретайте билеты, граждане! Десять копеек! Дети и красноармейцы бесплатно!

Upgrade parts 3: BEP-VEPP channel

- New bending magnets (17.2°, 41.2°) (4+4)
 + new vacuum chamber + bus bars.
- Ceramic gap in the beginning of channel
- Synchrotron radiation output from BM for one-flight diagnostics

Upgrade parts 4: VEPP-2000 ring

- Detectors KMD/SND profilactics
- New vacuum chambers with additional inflector/deflector
- New synchrotron output cupper mirrors

VEPP-2000 @ 01.09.2014

Summary

- Round beams give a serious luminosity enhancement.
- The achieved beam-beam parameter value at middle energies amounts to $\xi \sim 0.1-0.12$ during regular operation.
- "Long" bunch (σ_I ~ β^{*}) mitigates the beam-beam interaction restrictions, probably affecting on flip-flop effect.
- VEPP-2000 is taking data with two detectors across the wide energy range of 160–1000 MeV with a luminosity value two to five times higher than that achieved by its predecessor, VEPP-2M. Total luminosity integral collected by both detectors is about 110 pb⁻¹.
- To reach the target luminosity, injection chain upgrade was started.

Main control room of VEPP-2000

Thanks for your attention!

Yu. Rogovsky on behalf of VEPP-2000 team

41433

BEP layout

Lattice functions of half of the ring

VEPP-2000 lattice special feature: β^* variation modifies radiative beam emittance in the way that $\beta^* \epsilon = \sigma^{*2} = inv (\beta^*)$

VEPP-2000 latticefunction/orbit correction

Правка равновесной орбиты (РО)

Набор матрицы откликов РО в пикапах, вариация градиентов линз (4⊗32).

- 2) SVD-анализ и вычисление искажений орбиты в линзах.
 - ➡ 3) Расчёт токов коррекций для правки расчётных искажений.

ч 4) 2–3 итерации (~10 мин на итерацию)

Б) + процедура минимизации токов корректоров ΣI_{cor}

 $\Delta_x; \Delta_z \simeq \pm 0.5$ MM

Правка оптики

1) Набор МО в пикапах и ПЗС-камерах, вариация дипольных корректоров (20⊗36).

Ц 2) SVD-анализ и вычисление действующей модели.

З) Коррекция токов элементов (квадруполи + соленоиды).

4) 3–4 итерации (~10 мин на итерацию, 1 час в 2011 г.)

ровные размеры, проектная β*; нулевая дисперсия вне ахроматов

Компенсация связи

 $1-1.3 \ \kappa \Gamma c \times 1 \ м$ поле КМД + компенсирующие соленоиды S3

3 семейства скью-квадрупольных коррекций

 $v_1 - v_2 < 0.003$

Хронология работы в 2012-2013 году (I)

Сентябрь 2012	_	Начало работ. Модернизация СУ ускорительного комплекса. Установка новой системы ПЗС-камер на ВЭПП-2000. Установка новой электроники пикапов
Октябрь – начало ноября 2012	_	Введение в эксплуатацию новой дистилляторной. Геодезическая выставка ВЭПП-2000. Начало работ с круглым пучком. Настройка ВЭПП-2000
8 октября 2012	_	Оба пучка в ВЭПП-2000
9 ноября – 4 декабря	_	Эксперимент РНІ/ОМЕGA2012. Калибровка энергии по фи/омега- мезону. Энергии 510 и 390 МэВ, 19 точек, 0.91 пб ⁻¹ (КМД)
4 декабря 2012 – 28 января 2013	_	Эксперимент RHO2013 . Диапазон 490 – 360 МэВ, 32 точки, 4.1 пб ⁻¹
28 января – 1 февраля 2013	_	Измерение 13 магнита БЭП. Калибровка энергии методом резонансной деполяризации. «Тёплый» ВЭПП-2000.

Хронология работы в 2012-2013 году (II)

1 февраля. - 8	_	Поход на низкие энергииие эксперимента RHO2013 . Диапазон 360-160
ánþéля 2013		Мэ́В, 21 точка.
12 апреля – 11 мая 2013	-	Продолжение эксперимента RHO2013 . Диапазон 440-530 МэВ, 18 точек, 7 пб ⁻¹ .
12 мая – 26 июня 2013	-	Окончание эксперимента RHO2013 . Диапазон 410-370 МэВ, 11 точек, 5 пб ⁻¹ .
26 июня – 9 июля 2013	-	Эксперимент ЕТАРRIME2013 , 1 точка E=478.89 MeV, 5 пб ⁻¹ (КМД)
10 июля – 17 июля 2013	-	Изучение возможности удлинения сгустка.
Август 2013	-	Работа по демонтажу канала БЗМ-БЭП, разборка узлов БЭП