Author: Shatokhin, V.L.
Paper Title Page
TUPSA35 Virtual Laboratory of Vacuum Technique 110
 
  • G.P. Averyanov, V.V. Dmitriyeva, V.L. Shatokhin
    MEPhI, Moscow, Russia
 
  The report considers the interactive computer modeling of vacuum systems. Operation of real vacuum installations is modeled by simulating computer code. It becomes possible in a short time (with the assessment of real-time) to pass through full cycle of the technologies to reach high vacuum state and to estimate the necessary time. It is possible to assemble virtual installation, to choose the necessary pumps (from the database of low-vacuum and high-vacuum ones), to select the vacuum connecting pipes with the required parameters. The vacuum chamber volume and its internal surfaces characteristics (roughness, types of preliminary processing), defining outgassing from these surfaces are set. Possible leakage in junction places of the individual elements of the system could be taken into consideration. After pumping start, sequential switching on of different pumps and achievement of a certain pressure, possibility of chamber preheating up to the necessary temperature is provided. During the analysis of procedure of pumping optimization of the structure of system and the selected elements is made. The computer laboratory is a part of traditional laboratory of vacuum technique of the Department of Electrophysical Facilities of NRNU MEPhI. Modeling of vacuum systems significantly expands the functional capabilities of this laboratory.  
 
THPSC48 Hydrogen Nuclides Acceleration from Laser Plasma in the Diode with Magnetic Insulation of Electrons 435
 
  • A.E. Shikanov, K.I. Kozlovskiy, V.L. Shatokhin, E.D. Vovchenko
    MEPhI, Moscow, Russia
 
  New experimental results of obtaining accelerated deuterons in the small-sized diode with magnetic insulation are reported. The effective mode of ion acceleration to energies at 300 keV in the diode with a high voltage anode in order to initiate nuclear reactions D(d, n)3He is obtained with diode current ~0,5 kA and impulse duration ~1 mks in vacuum ~5*10-2 Pa. Containing deuterons laser plasma was generated at the anode during TiD target laser irradiation with a wavelength of 1.06 microns and a power density of ~5*1014 W/m2. Accelerating voltage impulse was formed using Arkadyev–Marx 20 cascade impulse voltage generator with air insulation. Diode cathode covers the anode symmetrically. It is a hollow cylinder permanent magnet with induction on the axis ~0,4 T. Magnetic insulation in accelerating gap leads to suppression of the accelerated electrons current at level of 0.5 in relation to the total diode current. Used methods of accelerating diode ion current, accelerating impulse voltage and penetrating radiations characteristics measurements are described.  
 
THPSC49 Hydrogen Nuclides Removing From Pulse Plasma Formations 438
 
  • B.Y. Bogdanovich, A. Nesterovich, V.L. Shatokhin, A.E. Shikanov
    MEPhI, Moscow, Russia
 
  The features of hydrogen nuclides extraction from vacuum-arc plasma and laser sources by electric field research results are presented in the report. Such sources can be used in accelerators injection systems and in neutron generators. These processes, found, are strongly influenced by electrostatic oscillations in the plasma boundary, which position continuously varies, in addition to the ions thermal motion. Such movement kinematics determined by the velocity field in plasma formation and its concentration reducing because of the ions extraction. On the basis of this model it shows that plasma boundary moves initially in the direction to the ejection electrode, then stops and begins quickly move back. An equation for the nuclides emission current density from hydrogen plasma surface for their quasiplanar extraction geometry is obtained.  
 
THPSC50 Neutron Accelerating Tubes with Microwave Deuterons Source Using Electron-cyclotron Resonance Effect 441
 
  • A.N. Didenko, B.Y. Bogdanovich, K.I. Kozlovskiy, A. Nesterovich, A.V. Prokopenko, V.L. Shatokhin, A.E. Shikanov
    MEPhI, Moscow, Russia
 
  The physical principles of increased efficiency neutron accelerating tubes based on the microwave sources of heavy hydrogen nuclides, using the electron-cyclotron resonance effect (ECR) are considered. The authors' theoretical results are given on electromagnetic oscillations generation in the working volume of the ion source of the accelerating tube with the boundary excitation of a microwave discharge. Resonator and waveguide modes for ECR-plasma excitation are thus examined. Features of neutron generation in these accelerator neutron tubes based on microwave source of heavy hydrogen nuclides are analyzed. The algorithm is developed and numerical simulation of neutron pulse formation in neutron generators based on microwave source is done taking into account target shape and the possible deuterons resonant recharge. Frequency dependences of the energy flux density transmitted from an alternating electromagnetic field to the electron component of the plasma are obtained depending on the constant longitudinal magnetic field induction and pressure in the discharge chamber. The results of these studies could form the basis for the efficient domestic portable neutron generators development based on accelerating tubes with microwave hydrogen nuclides sources.