A   B   C   D   F   G   H   I   J   K   L   M   N   O   P   Q   R   S   T   U   V   W   Y   Z  

Touchard, D. T.

Paper Title Page
TUP015 A Modbus/TCP-based Power Supply Interface 113
 
  • D. T. Touchard, C. H. Haquin
    GANIL, Caen
 
  The Spiral2 project is aiming to provide high intensity rare ion beams for nuclear physics experiments. It is based first on a primary beam driver accelerator consisting of a RFQ followed by a superconducting L. I.N. A.C., then a rare ion production process delivers the beam either to a low energy experimental area or to the existing Ganil facility. The EPICS software has been chosen as the basic framework to improve efficient collaboration between several research laboratories (CEA-IRFU, CNRS-IPHC, GANIL) which are designing the accelerator control system. The whole facility will integrate more than 600 power supplies used for the magnetic and high voltage equipment control of the accelerator. It has been decided to interface these power supplies through the MODBUS/TCP protocol, using Ethernet as a field bus. This paper introduces the EPICS software archetype set up to assess the practicability of such a solution and presents a first implantation for prototyping.  
WEP001 Preliminary Implementations for the New Spiral2 Project Control System 165
 
  • E. Lécorché, P. Gillette, D. T. Touchard
    GANIL, Caen
  • J. F. Denis, F. Gougnaud, J.-F. Gournay, Y. Lussignol, P. Mattei
    CEA, Gif-sur-Yvette
  • P. G. Graehling, J. H. Hosselet, C. M. Maazouzi, C. O. Olivetto
    IPHC, Strasbourg Cedex 2
 
  The Spiral2 project consists of a new facility to provide high intensity rare ions beams. It is based on a primary beam driver accelerator (RFQ followed by a superconducting linac) and a rare ion production process delivering the beam either to a low energy experimental area or to the existing Ganil facility. From October this year, one ion source coupled with a first beam line section will be in test; then, the injector (ion and deuteron sources, RFQ) will be tested by the end of 2010 so the whole accelerator should be commissioned by the end of 2011; the first exotic beams being planned one year later. The accelerator control system design results from the collaboration between several institutes and Epics has been chosen as the basic framework. The paper therefore presents the main choices: MVME5500 CPUs, VME I/O boards, VxWorks, Siemens PLCs, Modbus field buses, EDM screens and Java applications, Linux PCs, use of a LabView/Epics gateway<br/>Specific topics are the evaluation of the XAL environment, an Epics design to address the power supplies, an emittance measurement system, the development of a beam profiler interface and the investigation for a triggered acquisition system.  
poster icon Poster