A   B   C   D   E   F   G   H   I   J   K   L   M   N   O   P   Q   R   S   T   U   V   W   X   Y   Z  

Zaltsman, A.

Paper Title Page
TUOCKI02 Summary of the RHIC Performance during the FY07 Heavy Ion Run 722
 
  • K. A. Drees, L. Ahrens, J. G. Alessi, M. Bai, D. S. Barton, J. Beebe-Wang, M. Blaskiewicz, J. M. Brennan, K. A. Brown, D. Bruno, J. J. Butler, R. Calaga, P. Cameron, R. Connolly, T. D'Ottavio, W. Fischer, W. Fu, G. Ganetis, J. W. Glenn, M. Harvey, T. Hayes, H.-C. Hseuh, H. Huang, J. Kewisch, R. C. Lee, V. Litvinenko, Y. Luo, W. W. MacKay, G. J. Marr, A. Marusic, R. J. Michnoff, C. Montag, J. Morris, B. Oerter, F. C. Pilat, V. Ptitsyn, T. Roser, J. Sandberg, T. Satogata, C. Schultheiss, F. Severino, K. Smith, S. Tepikian, D. Trbojevic, N. Tsoupas, J. E. Tuozzolo, A. Zaltsman, S. Y. Zhang
    BNL, Upton, Long Island, New York
 
  Funding: Work performed under Contract Number DE-AC02-98CH10886 under the auspices of the US Department of Energy.

After the last successful RHIC Au-Au run in 2004 (Run-4), RHIC experiments now require significantly enhanced luminosity to study very rare events in heavy ion collisions. RHIC has demonstrated its capability to operate routinely above its design average luminosity per store of 2x1026 cm-2 s-1. In Run-4 we already achieved 2.5 times the design luminosity in RHIC. This luminosity was achieved with only 40% of bunches filled, and with β* = 1 m. However, the goal is to reach 4 times the design luminosity, 8x1026 cm-2 s-1, by reducing the beta* value and increasing the number of bunches to the accelerator maximum of 111. In addition, the average time in store should be increased by a factor of 1.1 to about 60% of calendar time. We present an overview of the changes that increased the instantaneous luminosity and luminosity lifetime, raised the reliability, and improved the operational efficiency of RHIC Au-Au operations during Run-7.

 
slides icon Slides  
TUODKI04 Accelerating Polarized Protons to 250 GeV 745
 
  • M. Bai, L. Ahrens, I. G. Alekseev, J. G. Alessi, J. Beebe-Wang, M. Blaskiewicz, A. Bravar, J. M. Brennan, K. A. Brown, D. Bruno, G. Bunce, J. J. Butler, P. Cameron, R. Connolly, T. D'Ottavio, J. DeLong, K. A. Drees, W. Fischer, G. Ganetis, C. J. Gardner, J. W. Glenn, T. Hayes, H.-C. Hseuh, H. Huang, P. F. Ingrassia, J. S. Laster, R. C. Lee, A. U. Luccio, Y. Luo, W. W. MacKay, Y. Makdisi, G. J. Marr, A. Marusic, G. T. McIntyre, R. J. Michnoff, C. Montag, J. Morris, P. Oddo, B. Oerter, J. Piacentino, F. C. Pilat, V. Ptitsyn, T. Roser, T. Satogata, K. Smith, S. Tepikian, D. Trbojevic, N. Tsoupas, J. E. Tuozzolo, M. Wilinski, A. Zaltsman, A. Zelenski, K. Zeno, S. Y. Zhang
    BNL, Upton, Long Island, New York
  • D. Svirida
    ITEP, Moscow
 
  Funding: The work was performed under the US Department of Energy Contract No. DE-AC02-98CH1-886, and with support of RIKEN(Japan) and Renaissance Technologies Corp.(USA)

The Relativistic Heavy Ion Collider~(RHIC) as the first high energy polarized proton collider was designed to provide polarized proton collisions at a maximum beam energy of 250GeV. It has been providing collisions at a beam energy of 100GeV since 2001. Equipped with two full Siberian snakes in each ring, polarization is preserved during the acceleration from injection to 100GeV with careful control of the betatron tunes and the vertical orbit distortions. However, the intrinsic spin resonances beyond 100GeV are about a factor of two stronger than those below 100GeV making it important to examine the impact of these strong intrinsic spin resonances on polarization survival and the tolerance for vertical orbit distortions. Polarized protons were accelerated to the record energy of 250GeV in RHIC with a polarization of 45\% measured at top energy in 2006. The polarization measurement as a function of beam energy also shows some polarization loss around 136GeV, the first strong intrinsic resonance above 100GeV. This paper presents the results and discusses the sensitivity of the polarization survival to orbit distortions.

 
slides icon Slides  
TUPMS076 Status of R&D Energy Recovery Linac at Brookhaven National Laboratory 1347
 
  • V. Litvinenko, J. Alduino, D. Beavis, I. Ben-Zvi, M. Blaskiewicz, J. M. Brennan, A. Burrill, R. Calaga, P. Cameron, X. Chang, K. A. Drees, G. Ganetis, D. M. Gassner, J. G. Grimes, H. Hahn, L. R. Hammons, A. Hershcovitch, H.-C. Hseuh, A. K. Jain, D. Kayran, J. Kewisch, R. F. Lambiase, D. L. Lederle, C. Longo, G. J. Mahler, G. T. McIntyre, W. Meng, T. C. Nehring, B. Oerter, C. Pai, D. Pate, D. Phillips, E. Pozdeyev, T. Rao, J. Reich, T. Roser, T. Russo, Z. Segalov, J. Smedley, K. Smith, J. E. Tuozzolo, G. Wang, D. Weiss, N. Williams, Q. Wu, K. Yip, A. Zaltsman
    BNL, Upton, Long Island, New York
  • H. Bluem, M. D. Cole, A. J. Favale, D. Holmes, J. Rathke, T. Schultheiss, A. M.M. Todd
    AES, Princeton, New Jersey
  • B. W. Buckley
    CLASSE, Ithaca
  • G. Citver
    Stony Brook University, StonyBrook
  • J. R. Delayen, L. W. Funk, H. L. Phillips, J. P. Preble
    Jefferson Lab, Newport News, Virginia
 
  Funding: Work performed under the auspices of the U. S. Department of Energy and partially funded by the US Department of Defence.

In this paper we present status and plans for the 20-MeV R&D energy recovery linac, which is under construction at Collider Accelerator Department at BNL. The facility is based on high current (up to 0.5 A of average current) super-conducting 2.5 MeV RF gun, single-mode super-conducting 5-cell RF linac and about 20-m long return loop with very flexible lattice. The R&D ERL, which is planned for commissioning in 2008, aims to address many outstanding questions relevant for high current, high brightness energy-recovery linacs.

 
TUPAS096 Setup and Performance of the RHIC Injector Accelerators for the 2007 Run with Gold Ions 1862
 
  • C. J. Gardner, L. Ahrens, J. G. Alessi, J. Benjamin, M. Blaskiewicz, J. M. Brennan, K. A. Brown, C. Carlson, W. Fischer, J. W. Glenn, M. Harvey, T. Hayes, H. Huang, G. J. Marr, J. Morris, F. C. Pilat, T. Roser, F. Severino, K. Smith, D. Steski, P. Thieberger, N. Tsoupas, A. Zaltsman, K. Zeno
    BNL, Upton, Long Island, New York
 
  Funding: Work performed under the auspices of the US Department of Energy.

Gold ions for the 2007 run of the Relativistic Heavy Ion Collider (RHIC) at Brookhaven National Laboratory (BNL) are accelerated in the Tandem, Booster and AGS prior to injection into RHIC. The setup and performance of this chain of accelerators will be reviewed with a focus on improvements in the quality of beam delivered to RHIC. In particular, more uniform stripping foils between Booster and AGS, and a new bunch merging scheme in AGS promise to provide beam bunches with reduced longitudinal emittance for RHIC.

 
WEOCKI03 Status of the R&D Towards Electron Cooling of RHIC 1938
 
  • I. Ben-Zvi, J. Alduino, D. S. Barton, D. Beavis, M. Blaskiewicz, J. M. Brennan, A. Burrill, R. Calaga, P. Cameron, X. Chang, K. A. Drees, A. V. Fedotov, W. Fischer, G. Ganetis, D. M. Gassner, J. G. Grimes, H. Hahn, L. R. Hammons, A. Hershcovitch, H.-C. Hseuh, D. Kayran, J. Kewisch, R. F. Lambiase, D. L. Lederle, V. Litvinenko, C. Longo, W. W. MacKay, G. J. Mahler, G. T. McIntyre, W. Meng, B. Oerter, C. Pai, G. Parzen, D. Pate, D. Phillips, S. R. Plate, E. Pozdeyev, T. Rao, J. Reich, T. Roser, A. G. Ruggiero, T. Russo, C. Schultheiss, Z. Segalov, J. Smedley, K. Smith, T. Tallerico, S. Tepikian, R. Than, R. J. Todd, D. Trbojevic, J. E. Tuozzolo, P. Wanderer, G. Wang, D. Weiss, Q. Wu, K. Yip, A. Zaltsman
    BNL, Upton, Long Island, New York
  • D. T. Abell, G. I. Bell, D. L. Bruhwiler, R. Busby, J. R. Cary, D. A. Dimitrov, P. Messmer, V. H. Ranjbar, D. S. Smithe, A. V. Sobol, P. Stoltz
    Tech-X, Boulder, Colorado
  • A. V. Aleksandrov, D. L. Douglas, Y. W. Kang
    ORNL, Oak Ridge, Tennessee
  • H. Bluem, M. D. Cole, A. J. Favale, D. Holmes, J. Rathke, T. Schultheiss, J. J. Sredniawski, A. M.M. Todd
    AES, Princeton, New Jersey
  • A. V. Burov, S. Nagaitsev, L. R. Prost
    Fermilab, Batavia, Illinois
  • Y. S. Derbenev, P. Kneisel, J. Mammosser, H. L. Phillips, J. P. Preble, C. E. Reece, R. A. Rimmer, J. Saunders, M. Stirbet, H. Wang
    Jefferson Lab, Newport News, Virginia
  • V. V. Parkhomchuk, V. B. Reva
    BINP SB RAS, Novosibirsk
  • A. O. Sidorin, A. V. Smirnov
    JINR, Dubna, Moscow Region
 
  Funding: Work done under the auspices of the US DOE with support from the US DOD.

The physics interest in a luminosity upgrade of RHIC requires the development of a cooling-frontier facility. Detailed cooling calculations have been made to determine the efficacy of electron cooling of the stored RHIC beams. This has been followed by beam dynamics simulations to establish the feasibility of creating the necessary electron beam. Electron cooling of RHIC at collisions requires electron beam energy up to about 54 MeV at an average current of between 50 to 100 mA and a particularly bright electron beam. The accelerator chosen to generate this electron beam is a superconducting Energy Recovery Linac (ERL) with a superconducting RF gun with a laser-photocathode. An intensive experimental R&D program engages the various elements of the accelerator: Photocathodes of novel design, superconducting RF electron gun of a particularly high current and low emittance, a very high-current ERL cavity and a demonstration ERL using these components.

 
slides icon Slides  
FROAC01 The Spallation Neutron Source Accumulator Ring RF System 3795
 
  • T. W. Hardek, M. S. Champion, M. T. Crofford, H. Ma, M. F. Piller
    ORNL, Oak Ridge, Tennessee
  • K. Smith, A. Zaltsman
    BNL, Upton, Long Island, New York
 
  Funding: SNS is managed by UT-Batelle, LLC, under contract DE-AC05-00OR22725 for the U. S. Department of Energy.

The Spallation Neutron Source (SNS) accumulator ring is a fixed-frequency proton storage ring located at the output of the SNS Linear Accelerator (Linac). Its purpose is to convert 1 millisecond H- beam pulses from the SNS Linac into high-intensity 695 nanosecond pulses of protons for delivery to the neutron target. The RF bunching system controls longitudinal beam distribution during the accumulation process and maintains a 250+ nanosecond gap required for beam extraction. The RF system consists of three stations which operate at a beam revolution frequency of 1.05 MHz while a fourth station provides a second harmonic component at 2.1 MHz. The beam pulse at extraction consists of 1.6·1014 protons representing a peak beam current of 52 amperes. The system utilizes four 600kW tetrodes to provide the RF current necessary to produce the 40kV peak-bunching voltage and to control phase and amplitude at this high beam current. In this paper we review the design concepts incorporated into this heavily beam-loaded RF system and discuss its commissioning status.

 
slides icon Slides