A   B   C   D   E   F   G   H   I   J   K   L   M   N   O   P   Q   R   S   T   U   V   W   X   Y   Z  

Weiler, Th.

Paper Title Page
TUPAN100 Performance Reach of the 1613
  • G. Robert-Demolaize, R. W. Assmann, C. Bracco, S. Redaelli, Th. Weiler
    CERN, Geneva
  State-of-the-art tracking tools have been developed for detailed LHC collimation and beam loss studies. This includes full chromatic treatment of both beam lines and error models. This paper reviews the main results on the performance reach of the multi-stage LHC collimation system that is being installed in the LHC. Limitations on the allowed proton loss rates and the stored intensity can be derived from the comparison of local losses with estimated quench limits for the superconducting magnets. The origins of the cleaning-related performance limitations are presented and possible improvements are discussed.  
TUPAN107 Beam Loss Response Measurements with an LHC Prototype Collimator in the SPS 1622
  • Th. Weiler, G. Arduini, R. W. Assmann, C. Bracco, H.-H. Braun, B. Dehning, P. Gander, E. B. Holzer, M. Jonker, R. Losito, A. Masi, L. Ponce, S. Redaelli, G. Robert-Demolaize, M. Sobczak, J. Wenninger
    CERN, Geneva
  Beam tests with an LHC prototype collimator were performed at the SPS in autumn 2006. Applying a new collimator control system many new beam measurements were performed. This contribution presents results on collimator-induced beam loss measurements and their applications to beam-based alignment of collimators and measurements of the beam size and position. Interesting features of the recorded beam loss signals are illustrated and possible impacts for LHC operation are discussed. The measured loss distributions around the full SPS ring are analyzed and compared with simulations.  
TUPAN108 LHC Collimation System Hardware Commissioning 1625
  • Th. Weiler, O. Aberle, R. W. Assmann, R. Chamizo, Y. Kadi, J. Lettry, S. Redaelli
    CERN, Geneva
  The stored energy and intensity of the LHC beam exceed the damage level of the machine and the quench level of the magnets by far. Therefore a robust and reliable collimation system is required which prevents the quenching of the magnets during regular operation and protects the accelerator components from damage in the event of beam loss. To assure that the installed collimators will protect the machine and permit the required performance of the collider, an appropriate hardware commissioning has to be implemented. In this contribution we describe the procedures for the hardware commissioning of the LHC collimation system. These procedures will establish the required precision and reliability of collimator movements and settings before the start of beam operation.  
WEOAC03 Transverse Impedance of LHC Collimators 2003
  • E. Metral, G. Arduini, R. W. Assmann, A. Boccardi, T. Bohl, C. Bracco, F. Caspers, M. Gasior, O. R. Jones, K. K. Kasinski, T. Kroyer, S. Redaelli, G. Robert-Demolaize, G. Rumolo, R. J. Steinhagen, Th. Weiler, F. Zimmermann
    CERN, Geneva
  • F. Roncarolo
    UMAN, Manchester
  • B. Salvant
    EPFL, Lausanne
  The transverse impedance in the LHC is expected to be dominated by the numerous collimators, most of which are made of Fibre-Reinforced-Carbon to withstand the impacts of high intensity proton beams in case of failures, and which will be moved very close to the beam, with full gaps of few millimetres, in order to protect surrounding super-conducting equipments. We present an estimate of the transverse resistive-wall impedance of the LHC collimators, the total impedance in the LHC at injection and top energy, the induced coupled-bunch growth rates and tune shifts, and finally the result of the comparison of the theoretical predictions with measurements performed in 2004 and 2006 on a prototype collimator installed in the SPS.  
slides icon Slides