A   B   C   D   E   F   G   H   I   J   K   L   M   N   O   P   Q   R   S   T   U   V   W   X   Y   Z  

Syratchev, I.

Paper Title Page
WEPMN071 High RF Power Production for CLIC 2194
 
  • I. Syratchev, E. Adli, D. Schulte, M. Taborelli
    CERN, Geneva
 
  The CLIC Power Extraction and Transfer Structure (PETS) is a passive microwave device in which bunches of the drive beam interact with the impedance of the periodically loaded waveguide and excite preferentially the synchronous mode. The RF power produced (several hundred MW) is collected at the downstream end of the structure by means of the Power Extractor and delivered to the main linac structure. The PETS geometry is a result of multiple compromises between beam stability and main linac RF power needs. Another requirement is to provide local RF power termination in case of accelerating structure failure (ON/OFF capability). Surface electric and magnetic fields, power extraction method, HOM damping, ON/OFF capability and fabrication technology were all evaluated to provide a reliable design.  
FROBC01 30 GHz High-Gradient Accelerating Structure Test Results 3818
 
  • J. A. Rodriguez, G. Arnau-Izquierdo, R. Corsini, S. Doebert, R. Fandos, A. Grudiev, I. Syratchev, M. Taborelli, F. Tecker, P. Urschutz, W. Wuensch
    CERN, Geneva
  • H. Aksakal, Z. Nergiz
    Ankara University, Faculty of Sciences, Tandogan/Ankara
  • M. Johnson
    UU/ISV, Uppsala
  • O. M. Mete
    Ankara University, Faculty of Engineering, Tandogan, Ankara
 
  The CLIC study is high power testing accelerating structures in a number of different materials and accelerating structure designs to understand the physics of breakdown, determine the appropriate scaling of performance and in particular to find ways to increase achievable accelerating gradient. The most recent 30 GHz structures which have been tested include damped structures in copper, molybdenum, titanium and aluminum. The results from these new structures are presented and compared to previous ones to determine dependencies of quantities such as achievable accelerating gradient, pulse length, power flow, conditioning rate and breakdown rate.  
slides icon Slides