30 GHZ HIGH-GRADIENT ACCELERATING STRUCTURE TEST RESULTS

- High power test-stand
- Typical testing history of a structure
- Brief description of the structures tested
- Experimental results
- Conclusions

High power Test-stand

• Final characterization...... 20 days Breakdown rates vs. gradient @ 70 ns Breakdown rates vs. gradient @ 40 ns Pulse length dependence

Testing history of a structur

• Installation 7 days

• Initial conditioning 7 days

Dark currents and ion currents measurements

Investigation of dark current capture

Breakdown rates vs. gradient @ 70 ns

Low level rf measurements

Leak checking

Pumping

Structures tested

	HDS60L [S]	HDS11
Frequency [GHz]	29.985	
Number of cells	60	11
Phase advance per cell	60°	
Beam aperture [mm]	1.9 [1.6]	1.9
v _q /c [%]	8 [5]	8
Fill time [ns]	5.2	0.8
E _{surf} / E _{acc}	1.8 [1.7]	1.8
P _{INC} [MW] for 100	43.6	43.6
MV/m in first cell	[24.0]	

Conditioning history

Breakdown rates

Pulse length dependance

Inspection of the surface

Conclusions

- The structures were heavily damaged during the high power tests. Therefore, some of the conclusions listed here will need to be verified with additional tests.
- First quadrant based structures were tested.
- The performance was ~ 20% worse than expected from circular structure tests.
- We believe that we understand why this happened and a second generation of quadrant based structures will be tested in the near future.
- Neither AI nor Ti nor Mo performed better than Cu at the required CLIC breakdown rates and pulse lengths.
- Pulse length dependences of HDS type structures may be stronger than for circular structures.
- Results of similar structures tested at 11.4 GHz show weak or no frequency dependence.

Conditioning history

HDS 60 L

HDS 60 S

Conditioning history

HDS 11 Mo

HDS 11 AI

Breakdown rates

Breakdown rates

