A   B   C   D   E   F   G   H   I   J   K   L   M   N   O   P   Q   R   S   T   U   V   W   X   Y   Z  

Rose, J.

Paper Title Page
MOPAS102 Design of Beam Transfer Lines for the NSLS II 664
 
  • N. Tsoupas, R. Heese, R. Meir, I. Pinayev, J. Rose, T. V. Shaftan, C. Stelmach
    BNL, Upton, New York
 
  Funding: Work supported by the US Department of Energy

The proposed NSLS II light source* to be built at Brookhaven National Laboratory utilizes a LINAC and a Booster with a Storage-ring which share the same tunnel, but at different horizontal planes. The Booster which accepts beam from the LINAC, accelerates the electron beam to an energy of 3.0 GeV and the beam is extracted to the BoostertoStorageRing(BtS) transport line. The BtS line transports the beam and injects it into the Storage ring . In order to facilitate the design of the BtS transfer line, the line has been partitioned in three sections which can be considered as independent. The function of each the three sections will be discussed in details and the procedure for the design of the BtS line and other details about the optics and the magnetic elements of the line will be presented in the paper. The LINAC to Booster beam transfer line will also be discussed.

*NSLS II CDR BNL

 
TUPMS072 Longitudinal Beam Parameter Tolerances of NSLS II 1338
 
  • W. Guo, G. L. Carr, S. Krinsky, J. Rose
    BNL, Upton, Long Island, New York
 
  Funding: National Synchrotron Light Source II

A notable feature of the proposed National Synchrotron Light Source II is that the vertical emittance is close to the diffraction limit of 1 Angstrom. With such a small emittance, the brightness is strongly affected by the longitudinal parameters, such as the momentum spread. Various effects are discussed and tolerances on the longitudinal parameters will be given. The lower level RF feedback system will be designed based on these tolerances.

 
TUPMS074 Collective Effects in the NSLS-II Storage Ring 1344
 
  • S. Krinsky, J. Bengtsson, J. S. Berg, M. Blaskiewicz, A. Blednykh, W. Guo, N. Malitsky, C. Montag, B. Podobedov, J. Rose, N. A. Towne, L.-H. Yu
    BNL, Upton, Long Island, New York
  • F. Wang
    MIT, Middleton, Massachusetts
 
  Funding: This work was supported by Department of Energy contract DE-AC02-98CH10886.

A new high-brightness synchrotron light source (NSLS-II) is under design at BNL. The 3-GeV NSLS-II storage ring has a double-bend achromatic lattice with damping wigglers installed in zero-dispersion straights to reduce the emittance below 1nm. In this note, we present an overview of the impact of collective effects upon the performance of the storage ring. Subjects discussed include Touschek lifetime, intra-beam scattering, instability thresholds due to ring impedance, and use of a third-harmonic Landau cavity.

 
TUPMS077 Injection Simulations for NSLS-II Storage Ring 1350
 
  • I. Pinayev, J. Rose, T. V. Shaftan, L.-H. Yu
    BNL, Upton, Long Island, New York
 
  Operation of the NSLS-II storage ring in the top-up mode requires highly reliable injection with low losses. In this paper we provide results of the injection simulations for the storage ring. The alignment tolerances as well as requirements for the injected beam parameters are also discussed.  
TUPMS081 Design considerations of the NSLS-II Injection Linac 1359
 
  • J. Rose, I. Pinayev, T. V. Shaftan
    BNL, Upton, Long Island, New York
 
  The NSLS-II injector consists of a 3 GeV booster injected by a 200MeV linac. Specifications of the linac are derived from Booster and Storage ring beam requirements. Linac design considerations are presented to meet these specifications.  
WEPMS091 Conceptual Design of the NSLS-II RF Systems 2550
 
  • J. Rose, A. Blednykh, W. Guo, P. Mortazavi, N. A. Towne
    BNL, Upton, Long Island, New York
 
  RF system requirements are derived from machine parameters and beam stability specifications. The conceptual design of the RF system for NSLS-II to meet these requirements is presented, consisting of 500 MHz superconducting main cavities, 1500 MHz SCRF harmonic cavities for bunch lengthening, and the RF power and cryogenic systems.  
TUPMS083 Conceptual Design of the NSLS-II Injection System 1362
 
  • T. V. Shaftan, J. Beebe-Wang, J. Bengtsson, G. Ganetis, W. Guo, R. Heese, H.-C. Hseuh, E. D. Johnson, V. Litvinenko, A. U. Luccio, W. Meng, S. Ozaki, I. Pinayev, S. Pjerov, D. Raparia, J. Rose, S. Sharma, J. Skaritka, C. Stelmach, N. Tsoupas, D. Wang, L.-H. Yu
    BNL, Upton, Long Island, New York
 
  Funding: This work was supported by Department of Energy contract DE-AC02-98CH10886.

We present conceptual design of the NSLS-II injection system. The injection system consists of low-energy linac, booster and transport lines. We review the requirements on the injection system imposed by the storage ring design and means of meeting these requirements. We discuss main parameters and layout of the injection system components.

 
FRPMS103 Coupling Impedance of the CESR-B RF Cavities for the NSLS-II Storage Ring 4327
 
  • A. Blednykh, S. Krinsky, J. Rose
    BNL, Upton, Long Island, New York
 
  CESR-B type superconducting cavities are under discussion for acceleration of the electron beam in the 3-GeV NSLS-II storage ring. In this paper we present a detailed investigation of longitudinal and transverse impedances of the cavity and transition assembly. Ferrite material is included in impedance analysis. Its effect on the short range wakepotential has been studied using the GdfidL code. Results of loss factors and kick factors are presented for a 3mm rms bunch length.