A   B   C   D   E   F   G   H   I   J   K   L   M   N   O   P   Q   R   S   T   U   V   W   X   Y   Z  

Quigley, P.

Paper Title Page
WEPMS013 High Power Tests of First Input Couplers for Cornell ERL Injector Cavities 2355
  • V. Veshcherevich, S. A. Belomestnykh, P. Quigley, J. J. Reilly, J. Sears
    CLASSE, Ithaca
  • W.-D. Moller
    DESY, Hamburg
  Funding: Work is supported by the National Science Foundation grant PHY 0131508

First RF power couplers for the ERL injector, currently under construction at Cornell University, have been fabricated. The couplers were assembled in pairs in the liquid nitrogen cryostat, built for their tests. A 15 kW CW IOT transmitter was available for coupler tests. A resonant ring was used for additional increase of the power. The couplers were successfully tested up to the goal power level of 50 kW CW. However, the first pair of couplers showed excessive temperature rise in some points. Therefore, minor changes in the design have been done to improve cooling.

THOAKI02 The Cornell ERL Superconducting 2-Cell Injector Cavity String and Test Cryomodule 2572
  • M. Liepe, S. A. Belomestnykh, E. P. Chojnacki, V. Medjidzade, H. Padamsee, P. Quigley, J. Sears, V. D. Shemelin, V. Veshcherevich
    CLASSE, Ithaca
  Funding: Work supported by NSF.

Cornell University is developing and fabricating a SRF injector cryomodule for the acceleration of the high current (100 mA) beam in the Cornell ERL prototype and ERL light source. Major challenges include emittance preservation of the low energy, ultra low emittance beam, cw cavity operation, and strong HOM damping with efficient HOM power extraction. Prototypes have been completed for the 2-cell niobium cavity with helium vessel, coaxial blade tuner with piezo fine tuners, twin high power input couplers, and beam line HOM absorbers loaded with ferrites and ceramics. Axial symmetry of HOM absorbers, together with two symmetrically placed input couplers per cavity, avoids transverse on-axis fields, which would cause emittance growth. A one-cavity cryostat has been designed following concepts of the TTF cryostat, and is presently under fabrication and assembly. The cryostat design has been optimized for precise cavity alignment, good magnetic shielding, and high dynamic cryogenic loads from the RF cavities, input couplers, and HOM loads. In this paper we report on the status of the assembly and first test of the one-cavity test cryostat.

slides icon Slides  
MOPAS043 Instrumentation for the Cornell ERL Injector Test Cryostats 527
  • P. Quigley
    Cornell University, Department of Physics, Ithaca, New York
  • S. A. Belomestnykh, M. Liepe, V. Medjidzade, J. Sears, V. Veshcherevich
    CLASSE, Ithaca
  Funding: Work is supported by the National Science Foundation grant PHY 0131508

Cornell is building a 1.3 GHz Injector Cryomodule for an ERL prototype. The cryomodule consists of five two-cell niobium cavities each cavity having two coaxial power input couplers. Cavity and coupler pairs will require acceptance testing at high power prior to assembly in the injector cryomodule. A liquid nitrogen cryostat for testing the couplers at high power has been built and the first input coupler test is complete. In addition, a Horizontal Test Cryostat (HTC) is being built to test input coupler pairs and cavities as a set. The first HTC test is scheduled for spring 2007. Details for instrumentation of the Coupler Test Cryostat (CTC) and HTC are presented.