A   B   C   D   E   F   G   H   I   J   K   L   M   N   O   P   Q   R   S   T   U   V   W   X   Y   Z  

Prestemon, S.

Paper Title Page
TUPMS003 Status of the Top-off Upgrade of the ALS 1197
 
  • C. Steier, B. J. Bailey, K. M. Baptiste, W. Barry, A. Biocca, W. E. Byrne, M. J. Chin, R. J. Donahue, R. M. Duarte, M. P. Fahmie, J. Gath, S. R. Jacobson, J. Julian, J.-Y. Jung, S. Kwiatkowski, S. Marks, R. S. Mueller, H. Nishimura, J. W. ONeill, S. Prestemon, D. Robin, S. L. Rossi, F. Sannibale, T. Scarvie, D. Schlueter, D. Shuman, G. D. Stover, CA. Timossi, T. Warwick, J. M. Weber, E. C. Williams
    LBNL, Berkeley, California
 
  Funding: This work was supported by the Director, Office of Science, Office of Basic Energy Sciences, U. S. Department of Energy under Contract No. DE-AC02-05CH11231.

The Advanced Light Source is currently being upgraded for top-off operation. This major facility upgrade will provide an improvement in brightness from soft x-ray undulators of about one order of magnitude and keep the ALS competitive with the newest intermediate energy light sources. Major components of the upgrade include making the booster synchrotron capable of full energy operation, radiation safety studies, improvements to interlocks and collimation systems, diagnostics upgrades as well as emittance improvements in the main storage ring. The project status will be discussed as well as results of major parts of the commissioning.

 
FRYKI03 New Developments in Light Source Magnet Design 3751
 
  • S. Prestemon, S. Marks, D. Schlueter
    LBNL, Berkeley, California
 
  The rapid growth in the light source community throughout the world has served to motivate innovation in the magnet technologies that serve as the foundations for both the storage ring lattice magnet systems and the primary radiation sources, the insertion devices. Here a sampling of magnet system developments being pursued at diverse facilities are discussed, including combined-function magnets that minimize space requirements and improve accelerator performance, high performance bend magnets that provide enhanced radiation characteristics, and novel and untested concepts for future lattice magnets. Finally, we review developments in insertion devices that promise new performance characteristics to better serve the light source community.  
slides icon Slides