A   B   C   D   E   F   G   H   I   J   K   L   M   N   O   P   Q   R   S   T   U   V   W   X   Y   Z  

Naito, T.

Paper Title Page
MOPAS024 Fast Extraction Kicker for the Accelerator Test Facility 485
 
  • S. De Santis
    LBNL, Berkeley, California
  • T. Naito, J. Urakawa
    KEK, Ibaraki
 
  Funding: Work supported by the U. S. Department of Energy under Contract No. DE-AC0-05CH11231.

We present the final results of a study for the design of a fast extraction kicker to be installed in the Accelerator Test Facility ring at KEK. The purpose of this project is to test the technologies to be used in the design of the extraction kickers for the International Linear Collider damping rings. The kicker's rise and fall times are important parameters in the final configuration of the rings, since they constrain the minimum distance between bunches and ultimately define a lower limit for the rings length. We investigated a stripline kicker composed of several 65-cm long sections, grouped in two different locations in the ATF damping ring. An analytical study of the kicker's parameter and extensive computer simulations using Microwave Studio* point out the ambitious requirements on the pulsers, in order to be able to satisfy the design specifications. We also investigated the use of a single kicker module, together with a close orbit bump near the extraction septum.

* http://www.cst.com

 
MOPAS067 Control and Measurements of Longitudinal Coupled-bunch Instabilities in the ATF Damping Ring 584
 
  • D. Teytelman, J. D. Fox
    SLAC, Menlo Park, California
  • W. X. Cheng, J. W. Flanagan, T. Naito, M. Tobiyama
    KEK, Ibaraki
  • A. Drago
    INFN/LNF, Frascati (Roma)
 
  Funding: Work supported by U. S. Department of Energy contract DE-AC02-76SF00515 and by the US-Japan collaboration in High Energy Physics

Damping ring at the Accelerator Test Facility (ATF) is a storage ring with 714 MHz RF frequency and harmonic number of 330. The ring is used in both single and multibunch regimes. In both cases significant longitudinal dipole motion has been observed in the ring. A prototype longitudinal feedback channel using a Gproto baseband processing channel and a set of horizontal striplines has been constructed for the machine. The prototype allowed both suppression of the longitudinal motion and studies of the motion sources. In this paper we present the results of these studies including measurements of steady-state oscillation amplitudes, eigenmodal patterns, and growth and damping rates. Using measured growth rates we estimate the driving impedances. We also present the effect of the longitudinal stabilization on the energy spread of the extracted beam as documented by a screen monitor.

 
THPMN028 Development of the Strip-line Kicker System for ILC Damping Ring 2772
 
  • T. Naito, H. Hayano, K. Kubo, M. Kuriki, N. Terunuma, J. Urakawa
    KEK, Ibaraki
 
  The performance of the kicker system for the International Linear collider(ILC) is the one of the key component to determine the damping ring(DR) circumference and the train structure. The parameters are discussing at the baseline configuration design for the ILC. The bunch trains in the linac are 2820(5640) bunches with 308(154) ns spacing and the repetition rate is 5Hz. The bunch spacing in the DR is 6(3) ns. The kicker has to have fast rise and fall times of 6(3) ns and the repetition rate of 3.25(6.5) MHz. The development work of the kicker system using multiple strip-lines is carried out at KEK-ATF. The beam test result of the single unit is described. Also Experimental results on new scheme to improve the rise and fall times will be presented.  
TUPMN044 Status of R&D Efforts Toward the ERL-based Future Light Source in Japan 1016
 
  • T. Kasuga, T. A. Agoh, A. Enomoto, S. Fukuda, K. Furukawa, T. Furuya, K. Haga, K. Harada, S. Hiramatsu, T. Honda, K. Hosoyama, M. Izawa, E. Kako, H. Kawata, M. Kikuchi, Y. Kobayashi, M. Kuriki, T. Mitsuhashi, T. Miyajima, S. Nagahashi, T. Naito, T. Nogami, S. Noguchi, T. Obina, S. Ohsawa, M. Ono, T. Ozaki, S. Sakanaka, H. Sasaki, S. Sasaki, K. Satoh, M. Satoh, T. Shioya, T. Shishido, T. Suwada, M. Tadano, T. Takahashi, Y. Tanimoto, M. Tawada, M. Tobiyama, K. Tsuchiya, T. Uchiyama, K. Umemori, S. Yamamoto
    KEK, Ibaraki
  • R. Hajima, H. Iijima, N. Kikuzawa, E. J. Minehara, R. Nagai, N. Nishimori, M. Sawamura
    JAEA/ERL, Ibaraki
  • H. Hanaki, H. T. Tomizawa
    JASRI/SPring-8, Hyogo-ken
  • A. Ishii, I. Ito, H. Kudoh, N. Nakamura, H. Sakai, S. Shibuya, K. Shinoe, H. Takaki
    ISSP/SRL, Chiba
  • M. Katoh, A. Mochihashi, M. Shimada
    UVSOR, Okazaki
 
  Energy Recovery Linacs (ERL), based on superconducting accelerators, are one of the most promising synchrotron light sources in future. The KEK and the JAEA, in collaboration with the ISSP, the UVSOR, and the SPring-8, are considering to realize together the ERL-based next-generation light source in Japan. To establish key technologies for that, active R&D efforts started. The R&D program includes the developments of ultra-low-emittance photocathode guns and of superconducting cavities, as well as experimental proofs of accelerator-physics issues at the ERL test facility, which will be built at the KEK campus. We are currently working on constructing a prototype photocathode gun, on designing superconducing cavities, and on designing a prototype ERL. The current plan of the prototype ERL comprises a full injector linac, one or two cryomodules for the main linac, and the beam return loop, which can be operated at beam energies from 60 to 160 MeV. The up-to-date R&D status will be reported.