A   B   C   D   E   F   G   H   I   J   K   L   M   N   O   P   Q   R   S   T   U   V   W   X   Y   Z  

Kazakov, S.

Paper Title Page
MOZAKI01 Compensation of the Crossing Angle with Crab Cavities at KEKB 27
 
  • K. Oide, T. Abe, K. Akai, M. Akemoto, A. Akiyama, A. Arinaga, K. Ebihara, K. Egawa, A. Enomoto, J. W. Flanagan, S. Fukuda, H. Fukuma, Y. Funakoshi, K. Furukawa, T. Furuya, K. Hara, T. Higo, S. Hiramatsu, H. Hisamatsu, H. Honma, K. Hosoyama, T. Ieiri, N. Iida, H. Ikeda, M. Ikeda, S. Isagawa, H. Ishii, A. Kabe, E. Kadokura, T. Kageyama, K. Kakihara, E. Kako, S. Kamada, T. Kamitani, K.-I. Kanazawa, H. Katagiri, S. Kato, T. Kawamoto, S. Kazakov, M. Kikuchi, E. Kikutani, K. Kitagawa, H. Koiso, Y. Kojima, K. Komada, T. Kubo, K. Kudo, N. K. Kudo, K. Marutsuka, M. Masuzawa, S. Matsumoto, T. Matsumoto, S. Michizono, K. Mikawa, T. Mimashi, S. Mitsunobu, K. Mori, A. Morita, Y. Morita, H. Nakai, H. Nakajima, T. T. Nakamura, H. Nakanishi, K. Nakao, S. Ninomiya, Y. Ogawa, K. Ohmi, Y. Ohnishi, S. Ohsawa, Y. Ohsawa, N. Ohuchi, M. Ono, T. Ozaki, K. Saito, H. Sakai, Y. Sakamoto, M. Sato, M. Satoh, K. Shibata, T. Shidara, M. Shirai, A. Shirakawa, T. Sueno, M. Suetake, Y. Suetsugu, R. Sugahara, T. Sugimura, T. Suwada, O. Tajima, S. Takano, S. Takasaki, T. Takenaka, Y. Takeuchi, M. Tawada, M. Tejima, M. Tobiyama, N. Tokuda, S. Uehara, S. Uno, Y. Yamamoto, Y. Yano, K. Yokoyama, Ma. Yoshida, M. Yoshida, S. I. Yoshimoto, K. Yoshino
    KEK, Ibaraki
  • E. Perevedentsev, D. N. Shatilov
    BINP SB RAS, Novosibirsk
 
  The crab cavities are presently being installed in the KEKB rings to compensate the crossing angle at collision and thus increase luminosity. This will be the first experience with such cavities in colliders. Results on the beam operation of the new cavities, both for single and colliding beams, will be presented including the luminosity performance and limitations.

Work presented on behalf of the KEKB Accelerator Group.

 
slides icon Slides  
MOPAS072 First Measurements of RF Properties of Large Ferroelectric Rings for RF Switches and Phase Shifters 596
 
  • V. P. Yakovlev, J. L. Hirshfield
    Omega-P, Inc., New Haven, Connecticut
  • A. Kanareykin
    Euclid TechLabs, LLC, Solon, Ohio
  • S. Kazakov
    KEK, Ibaraki
  • E. Nenasheva
    Ceramics Ltd., St. Petersburg
  • S. V. Shchelkunov
    Columbia University, New York
 
  Funding: Research supported by the Department of Energy, Division of High Energy Physics

Fast, electrically-controlled ferroelectric RF vector modulators are under development for different accelerator applications in the frequency range 0.4 - 1.3 GHz. The exact design of a vector modulator depends on the electrical parameters of particular ferroelectric material to be used, namely its dielectric constant, loss tangent and tunability. The exact values of these parameters were unknown in this frequency domain for low loss BST material that is planned to be used. A special two-disc test cavity has been designed and built that allows direct measurements of these parameters for large (100 mm in diameter) ferroelectric rings that are to be used in vector modulators. The results of measurements are presented.

 
MOPAS073 700 MHz Low-Loss Electrically-Controlled Fast Ferroelectric Phase Shifter For ERL Application 599
 
  • V. P. Yakovlev, J. L. Hirshfield
    Omega-P, Inc., New Haven, Connecticut
  • A. Kanareykin
    Euclid TechLabs, LLC, Solon, Ohio
  • S. Kazakov
    KEK, Ibaraki
  • E. Nenasheva
    Ceramics Ltd., St. Petersburg
 
  Funding: Research supported by the Department of Energy, Division of High Energy Physics

A fast, electrically-controlled phase shifter is described with parameters suitable for operation with the SC acceleration structure of the electron cooling system of Relativistic Heavy Ion Collider (RHIC) at BNL. The phase shifter is a key element of the external RF vector modulator that is capable of fast tuning of the cavities against microphonics, Lorentz force and beam instabilities in a way that can possibly lead to an order of magnitude reduction in the required RF power. The phase shifter is based on a shortened low-impendence coaxial line with ferroelectric rings. The dielectric constant of the ferroelectric rings is altered by applying a 4.2 kV voltage that provides an RF phase shift from 0 to 180 deg.

 
WEPMN066 Progress Towards Development of a Superconducting Traveling Wave Accelerating Structure 2182
 
  • P. V. Avrakhov
    LPI, Moscow
  • A. Kanareykin
    Euclid TechLabs, LLC, Solon, Ohio
  • S. Kazakov
    KEK, Ibaraki
  • N. Solyak
    Fermilab, Batavia, Illinois
  • V. P. Yakovlev
    Omega-P, Inc., New Haven, Connecticut
 
  In the ILC project the required accelerating gradient is higher than 35 MeV/m. For current technology the maximum acceleration gradient in SC structures is limited mainly by the value of the surface RF magnetic field. In order to increase the gradient, the RF magnetic field is distributed homogeneously over the cavity surface (low-loss structure), and coupling to the beam is improved by introducing aperture ?noses? (re-entrant structure). These features allow gradients in excess of 50 MeV/m to be obtained for a singe-cell cavity. Further improvement of the coupling to the beam may be achieved by using a TW SC structure with small phase advance per cell. Calculations show that an additional gradient increase by up to 40% is possible if a p/2 TW SC structure is employed. However, a TW SC structure requires a SC feedback waveguide to return the few GW of circulating RF power from the structure output back to the structure input. We describe a single-cell test TW SC structure with a feedback waveguide. The test cavity is designed to demonstrate the possibility of achieving a significantly higher gradient than existing SC structures.  
WEPMS054 45 MW, K-Band Second-Harmonic Multiplier for Testing High-Gradient Accelerator Structures 2466
 
  • V. P. Yakovlev, J. L. Hirshfield
    Omega-P, Inc., New Haven, Connecticut
  • S. Kazakov
    KEK, Ibaraki
 
  Funding: Research supported by the Department of Energy, Division of High Energy Physics

A relatively simple and inexpensive two-cavity 45 MW, 22.8 GHz second-harmonic multiplier is considered as an RF source for High-Gradient experiments. The design is to be based on use of an existing SLAC electron gun, such as the XL-4 gun. RF drive power would be supplied from a 50 MW SLAC klystron and modulator, and a second modulator would be used to power the gun in the multiplier. An important feature of the harmonic multiplier is TE 01 circular waveguide for output RF power extraction.

 
WEPMS086 Design of a 26 GHz Wakefield Power Extractor 2535
 
  • C.-J. Jing, A. Kanareykin
    Euclid TechLabs, LLC, Solon, Ohio
  • W. Gai, F. Gao, R. Konecny
    ANL, Argonne, Illinois
  • S. Kazakov
    KEK, Ibaraki
 
  High frequency, high output power, and high efficiency RF sources have compelling applications in accelerators for high energy physics. The 26 GHz RF power extractor proposed in this paper provides a practical approach for generating high power RF in this particular frequency range. The extractor is designed to couple out RF power generated from the high charge electron bunch train at the Argonne Wakefield Accelerator (AWA) facility traversing dielectric loaded or corrugated waveguides. In this paper we evaluate two different techniques for extracting the beam energy at the AWA: one is based on a completely metallic corrugated waveguide and coupler; and the other is based on a dielectric lined circular waveguide and coupler. Designs for both RF power extractors will be presented including parameter optimization, the electromagnetic modeling of structures and RF couplers, and the analysis of beam dynamics.  
WEPMS087 Conceptual Design of an L-Band Recirculating Superconducting Traveling Wave Accelerating Structure 2538
 
  • A. Kanareykin, P. V. Avrakhov, Z. Liu
    Euclid TechLabs, LLC, Solon, Ohio
  • W. Gai
    ANL, Argonne, Illinois
  • S. Kazakov
    KEK, Ibaraki
  • N. Solyak
    Fermilab, Batavia, Illinois
  • V. P. Yakovlev
    Omega-P, Inc., New Haven, Connecticut
 
  Funding: This research is supported by the US Department of Energy

We describe a conceptual design for a superconducting traveling wave accelerator for the ILC. The RF feedback system plus phase shifter can redirect the accelerating wave that passed through the STWA section back to the input of the accelerating structure. In this paper, the STWA cell shape optimization, coupler cell design and rat race ring coupler in the feedback loop are presented. The STWA cell shape is similar to the LL cavity with a 60 mm disk diameter. A 9-cell STWA operates at the mode with group velocity as low as 0.0106 c. Both the ratio of peak electric field and magnetic field to the axial electric field are smaller than in the TESLA 9-cell cavity. The STWA structure has more cells per unit length than a TESLA structure but provides an accelerating gradient higher than a TESLA structure, consequently reducing the cost. The designed rat race directional coupler with four ports has ?3 dB direct coupling coefficients, 16.5 MHz bandwidth between ?30 dB isolations and 1.1 MHz bandwidth between ?30 dB reflection coefficients. Effects of the mechanical tolerances are also discussed.

 
TUPAN045 Beam Operation with Crab Cavities at KEKB 1487
 
  • H. Koiso, T. Abe, T. A. Agoh, K. Akai, M. Akemoto, A. Akiyama, A. Arinaga, K. Ebihara, K. Egawa, A. Enomoto, J. W. Flanagan, S. Fukuda, H. Fukuma, Y. Funakoshi, K. Furukawa, T. Furuya, K. Hara, T. Higo, S. Hiramatsu, H. Hisamatsu, H. Honma, T. Honma, K. Hosoyama, T. Ieiri, N. Iida, H. Ikeda, M. Ikeda, S. Inagaki, S. Isagawa, H. Ishii, A. Kabe, E. Kadokura, T. Kageyama, K. Kakihara, E. Kako, S. Kamada, T. Kamitani, K.-I. Kanazawa, H. Katagiri, S. Kato, T. Kawamoto, S. Kazakov, M. Kikuchi, E. Kikutani, K. Kitagawa, Y. Kojima, I. Komada, T. Kubo, K. Kudo, N. K. Kudo, K. Marutsuka, M. Masuzawa, S. Matsumoto, T. Matsumoto, S. Michizono, K. Mikawa, T. Mimashi, S. Mitsunobu, K. Mori, A. Morita, Y. Morita, H. Nakai, H. Nakajima, T. T. Nakamura, H. Nakanishi, K. Nakao, S. Ninomiya, Y. Ogawa, K. Ohmi, Y. Ohnishi, S. Ohsawa, Y. Ohsawa, N. Ohuchi, K. Oide, M. Ono, T. Ozaki, K. Saito, H. Sakai, Y. Sakamoto, M. Sato, M. Satoh, K. Shibata, T. Shidara, M. Shirai, A. Shirakawa, T. Sueno, M. Suetake, Y. Suetsugu, R. Sugahara, T. Sugimura, T. Suwada, O. Tajima, S. Takano, S. Takasaki, T. Takenaka, Y. Takeuchi, M. Tawada, M. Tejima, M. Tobiyama, N. Tokuda, S. Uehara, S. Uno, Y. Yamamoto, Y. Yano, K. Yokoyama, Ma. Yoshida, M. Yoshida, S. I. Yoshimoto, K. Yoshino
    KEK, Ibaraki
  • E. Perevedentsev
    BINP SB RAS, Novosibirsk
 
  Beam operation with crab cavities is planned in early 2007 at KEKB. The crab crossing scheme is expected to increase the vertical beam-beam tune-shift parameter significantly. One crab cavity will be installed in each ring where conditions for beam optics are matched to compensate the beam crossing angle of 22 mrad. Operation results on collision tuning with the crab cavities will be presented.

For the KEKB Accelerator Group.

 
THPMS073 Progress towards a Gap Free Dielectric-Loaded Accelerator 3151
 
  • C.-J. Jing, A. Kanareykin
    Euclid TechLabs, LLC, Solon, Ohio
  • S. H. Gold
    NRL, Washington, DC
  • S. Kazakov
    KEK, Ibaraki
  • R. Konecny, J. G. Power
    ANL, Argonne, Illinois
 
  One of the major concerns in the development of Dielectric-Loaded Accelerating (DLA) structures is the destructive breakdown at dielectric joints caused by a local electric field enhancement induced by the discontinuity of the dielectric constant on the surface of the joint gap. Our previous X-band traveling wave DLA structure design*, for example, incorporated two separate impedance matching sections with at least two dielectric joints. In this paper, we present a new design to avoid this problem. This scheme is based on a coaxial type coupler which is able to implement mode conversion and impedance matching at the same time and therefore to eliminate joint gap induced breakdown. The new structure is under construction; bench test results will be presented

* C. Jing, W. Gai, J. Power, R. Konecny, S. Gold, W. Liu and A. Kinkead, IEEE, Trans. PS, vol.33 No.4, Aug. 2005, pp.1155-1160.

 
THPMS076 Development of Dual Layered Dielectric-Loaded Accelerating Structure 3160
 
  • C.-J. Jing, A. Kanareykin
    Euclid TechLabs, LLC, Solon, Ohio
  • S. Kazakov
    KEK, Ibaraki
 
  Funding: DOE SBIR Phase I, DOE Grant No. DE-FG02-05ER84356

Due to the high magnetic field-induced surface currents on its conducting sleeve, a conventional single layer Dielectric-Loaded Accelerating (DLA) structure exhibits a relatively high RF loss. One possible way to solve this problem is to use multilayered DLA structures*. In these devices, the RF power attenuation is reduced by making use of the Bragg Fiber concept: the EM fields are well confined by multiple reflections from multiple dielectric layers. This paper presents the design of an X-band dual layer DLA structure as well as the results of bench tests of the device. We will also present results on the design, numerical modeling, and fabrication of structures for coupling RF into multilayer DLAs such as a novel TM03 mode launcher and a TM01-TM03 mode converter using dielectric-loaded corrugated waveguide.

* C. Jing, W. Liu, W. Gai, J. G. Power, and T. Wong, Nucl. Instr. Meth. Phy. Res. A 539 (2005) 445-454.