A   B   C   D   E   F   G   H   I   J   K   L   M   N   O   P   Q   R   S   T   U   V   W   X   Y   Z  

Joshi, C.

Paper Title Page
TUPMS040 Development of a THz Seed Source for FEL Microbunching Experiment at the Neptune Laboratory 1275
 
  • S. Tochitsky, C. Joshi, C. Sung
    UCLA, Los Angeles, California
 
  Funding: This work is supported by US Department of Energy Grant No. DE-FG03-92ER40727

Seeded FEL/IFEL techniques can be used for modulation of a relativistic electron beam longitudinally on the radiation wavelength. However, in the 1-10 THz range, which is of particular importance for matched injection of prebunched electrons into a laser-driven plasma accelerating structure, a suitable radiation source is not available. At the UCLA Neptune Laboratory we have built and fully characterized a radiation source tunable in the range of 1-3 THz. The THz pulse is produced by mixing two CO2 laser lines in a noncollinear phase-matched GaAs crystal at room temperature. The crystal is pumped by 200 ns pulses of a dual beam TEA CO2 laser running at 1 Hz. A grating placed in each lasing section allowed to cover the spectral range for the difference frequency from 0.5-4.5 THz with a step of 30-40 GHz. The achieved narrow bandwidth of ~10-5 and the output power of 2kW are sufficient for seeding a single-pass, waveguide FEL amplifier-prebuncher*. These pulses were used to measure the coupling efficiency and the attenuation for different types of THz waveguides and the results will be reported.

* C. Sung et al. "Seeded FEL/IFEL techniques for radiation amplification and electron microbunching in the terahertz range" Phys. Rev. STAB, 2006 (to be published)

 
WEYKI01 Results of the Energy Doubler Experiment at SLAC 1910
 
  • M. J. Hogan, I. Blumenfeld, F.-J. Decker, R. Ischebeck, R. H. Iverson, N. A. Kirby, R. Siemann, D. R. Walz
    SLAC, Menlo Park, California
  • C. E. Clayton, C. Huang, C. Joshi, W. Lu, K. A. Marsh, W. B. Mori, M. Zhou
    UCLA, Los Angeles, California
  • T. C. Katsouleas, P. Muggli, E. Oz
    USC, Los Angeles, California
 
  Funding: This work was supported by the Department of Energy contracts DE-AC02-76SF00515, DE-FG02-92ER40727, DE-FG02-92-ER40745. DE-FG02-03ER54721, DE-FC02-01ER41179 and NSF grant Phy-0321345.

The costs and the time scales of colliders intended to reach the energy frontier are such that it is important to explore new methods of accelerating particles to high energies. Plasma-based accelerators are particularly attractive because they are capable of producing accelerating fields that are orders of magnitude larger than those used in conventional colliders. In these accelerators a drive beam, either laser or particle, produces a plasma wave (wakefield) that accelerates charged particles. The ultimate utility of plasma accelerators will depend on sustaining ultra-high accelerating fields over a substantial length to achieve a significant energy gain. More than 42 GeV energy gain was achieved in an 85 cm long plasma wakefield accelerator driven by a 42 GeV electron drive beam at the Stanford Linear Accelerator Center (SLAC). Most of the beam electrons lose energy to the plasma wave, but some electrons in the back of the same beam pulse are accelerated with a field of ~52 GV/m. This effectively doubles their energy, producing the energy gain of the 3 km long SLAC accelerator in less than a metre for a small fraction of the electrons in the injected bunch.

 
slides icon Slides  
WEOBKI02 Evolution of Relativistic Plasma Wave-Front in LWFA 1919
 
  • C. E. Clayton, F. Fang, C. Joshi, K. A. Marsh, A. E. Pak, J. E. Ralph
    UCLA, Los Angeles, California
  • N. C. Lopes
    Instituto Superior Tecnico, Lisbon
 
  Funding: Work supported by DOE Grant Nos. DE-FG52-03NA00138 and DE-FG02-92ER40727, and Grant POCI/FIS/58776/2004 (FCT-Portugal)

In a laser wakefield accelerator experiment where the length of the pump laser pulse is several plasma period long, the leading edge of the laser pulse undergoes frequency downshifting as the laser energy is transferred to the wake. Therefore, after some propagation distance, the group velocity of the leading edge of of the pump pulse–and therefore of the driven electron plasma wave–will slow down. This can have implications for the dephasing length of the accelerated electrons and therefore needs to be understood experimentally. We have carried out an experimental investigation where we have measured the velocity vf of the 'wave-front' of the plasma wave driven by a nominally 50fs (FWHM), intense (a0~1), 0.8 micron laser pulse. To determine the speed of the wave front, time- and space-resolved shadowgraphy, interferometry, and Thomson scattering were used. Although low density data (ne ~ 1018 cm-3) showed no significant changes in vf over 1.5mm (and no accelerated electrons), high-density data shows accelerated electrons and an approximately 5% drop in vf after a propagation distance of about 800 microns.

 
slides icon Slides  
THPMS023 Designing LWFA in the Blowout Regime 3050
 
  • W. Lu, C. Joshi, W. B. Mori, F. S. Tsung, M. Tzoufras
    UCLA, Los Angeles, California
  • S. Fonseca, L. O. Silva, J. H. Vieira
    Instituto Superior Tecnico, Lisbon
 
  Funding: This work was supported by DOE and NSF under grant Nos. DE-FG03-92ER40727, DE-FC02-01ER41179, DE-FG02-03ER54721, and NSF-Phy-0321345.

The extraordinary ability of space-charge waves in plasmas to accelerate charged particles at gradients that are orders of magnitude greater than that in current accelerators has been well documented. We develop a phenomenological framework for Laser Wakefield Acceleration (LWFA) in the 3D nonlinear regime, in which the plasma electrons are expelled by the radiation pressure of a short pulse laser, leading to nearly complete blowout. This theory provides a recipe for designing a LWFA for given laser and plasma parameters and estimates the number and the energy of the accelerated electrons whether self-injected or externally injected. These formulas apply for self-guided as well as externally guided pulses (e.g. by plasma channels). Based on this theory, we will present scenarios on how to build a single stage accelerator with output energies from GeV to TeV. Particle-In-Cell (PIC) simulations are used to verify our theory. This work was supported by DOE and NSF under grant Nos. DE-FG03-92ER40727, DE-FC02-01ER41179, DE-FG02-03ER54721, and NSF-Phy-0321345.

 
THPMS024 Experimental Investigation of Self-guiding using a Matched Laser Beam in a cm Scale Length Underdense Plasma 3052
 
  • J. E. Ralph, C. E. Clayton, F. Fang, C. Joshi, K. A. Marsh, A. E. Pak
    UCLA, Los Angeles, California
 
  Funding: This work was supported by NNSA Grant no. DE-FG52- 03NA00138, and DOE Grant no. DE-FG02-92ER40727.

High-intensity short-pulse laser guiding in plasma channels has extended the length over which acceleration occurs in laser wake field accelerators*. Recent multidimensional nonlinear plasma wave theory predicts a range of optimal characteristics for self-guiding of laser pulses in the blowout regime for pulses shorter than a plasma wavelength**. This theory predicts a robust, stable parameter space for self-guiding and wake production and has been verified through multidimensional particle-in-cell simulations. We experimentally explore the plasma dynamics and laser pulse propagation using a 50 fs multi-terawatt Ti:Sapphire laser in a helium plasma at plasma densities, laser powers, and spot sizes within this parameter space. Our parameters are in the range where the plasma is underdense and the laser power is much greater than the critical power for self focusing. The evolution of the laser pulse and plasma channel will be followed over several Rayleigh lengths.

* C. Geddes et. al., Nature (London) 431, 538 (2004)** W. Lu et. al., Phys. Plasmas 13, 056709 (2006)

 
THPMS029 Beam Head Erosion in Self-ionized Plasma Wakefield Accelerators 3064
 
  • M. Zhou, C. E. Clayton, C. Huang, C. Joshi, W. Lu, K. A. Marsh, W. B. Mori
    UCLA, Los Angeles, California
  • M. K. Berry, I. Blumenfeld, F.-J. Decker, M. J. Hogan, R. Ischebeck, R. H. Iverson, N. A. Kirby, R. Siemann, D. R. Walz
    SLAC, Menlo Park, California
  • T. C. Katsouleas, P. Muggli, E. Oz
    USC, Los Angeles, California
 
  Funding: Work supported by Department of Energy contracts DE-AC02-76SF00515, DE-FG02-92ER40727, DE-FG02-92-ER40745 DE-FG02-03ER54721, DE-FC02-01ER41179 and NSF grant Phy-0321345

In the recent plasma wakefield accelerator experiments at SLAC, the energy of the particles in the tail of the 42 GeV electron beam were doubled in less than one meter [1]. Simulations suggest that the acceleration length was limited by a new phenomenon – beam head erosion in self-ionized plasmas. In vacuum, a particle beam expands transversely in a distance given by beta*. In the blowout regime of a plasma wakefield [2], the majority of the beam is focused by the ion channel, while the beam head slowly spreads since it takes a finite time for the ion channel to form. It is observed that in self-ionized plasmas, the head spreading is exacerbated compared to that in pre-ionized plasmas, causing the ionization front to move backward (erode). A simple theoretical model is used to estimate the upper limit of the erosion rate for a bi-gaussian beam by assuming free expansion of the beam head before the ionization front. Comparison with simulations suggests that half this maximum value can serve as an estimate for the erosion rate. Critical parameters to the erosion rate are discussed.

[1] I. Blumenfeld et al., Nature 445, 741(2007)[2] J. B. Rosenzweig et al., Phys. Rev. A 44, R6189 (1991)

 
THPMS033 Scaling of Energy Gain with Plasma Parameters in a Plasma Wakefield Accelerator 3076
 
  • P. Muggli, T. C. Katsouleas, E. Oz
    USC, Los Angeles, California
  • I. Blumenfeld, F.-J. Decker, M. J. Hogan, R. Ischebeck, R. H. Iverson, N. A. Kirby, R. Siemann, D. R. Walz
    SLAC, Menlo Park, California
  • C. E. Clayton, C. Huang, C. Joshi, W. Lu, K. A. Marsh, W. B. Mori, M. Zhou
    UCLA, Los Angeles, California
 
  Funding: This work was supported by the Department of Energy contracts DE-AC02-76SF00515, DE-FG02-92ER40727, DE-FG02-92-ER40745. DE-FG02-03ER54721, DE-FC02-01ER41179 and NSF grant Phy-0321345.

Systematic measurements of energy gain as a function of plasma parameters in the SLAC electron beam-driven plasma wakefield acceleration (PWFA) experiments lead to very important understanding of the beam-plasma interaction. In particular, measurements as a function of the plasma length Lp show that the energy gain increases linearly with Lp in the 10 to 30 cm range. Based on this scaling, the plasma was subsequently lengthened to Lp=90cm, resulting in the first demonstration of the doubling of the energy of a fraction of the incoming 42GeV electrons*. The peak accelerating gradient is larger than 40GV/m and is sustained over meter-scale plasma lengths. These measurements also reveal that the optimum plasma density for acceleration is about 2.7·1017/cc, larger than the value predicted by the linear theory for the approximately 20 microns bunch length, confirming that the experiment is conducted in the non-linear regime of the PWFA. Detailed experimental results will be presented.

* "Energy doubling of 42 GeV electrons in a meter scale plasma wakefield accelerator", I. Blumenfeld et. al., Nature, 2006, accepted

 
THPMS037 ON THE POSSIBILITY OF ACCELERATING POSITRON ON AN ELECTRON WAKE AT SABER 3082
 
  • X. Wang, T. C. Katsouleas, P. Muggli
    USC, Los Angeles, California
  • R. Ischebeck
    SLAC, Menlo Park, California
  • C. Joshi
    UCLA, Los Angeles, California
 
  Funding: This work was supported by the Department of Energy contract DE-FG02-92-ER40745

A new approach for positron acceleration in non-linear plasma wakefields driven by electron beams is presented. Positrons can be produced by colliding an electron beam with a thin foil target embedded in the plasma. Integration of positron production and acceleration in one stage is realized by a single relativistic, intense electron beam. Simulations with the parameters of the proposed SABER facility at SLAC suggest that this concept could be tested there.

 
THPMS040 Correlation of Beam Parameters to Decelerating Gradient in the E-167 Plasma Wakefield Acceleration Experiment 3091
 
  • I. Blumenfeld, M. K. Berry, F.-J. Decker, M. J. Hogan, R. Ischebeck, R. H. Iverson, N. A. Kirby, R. Siemann, D. R. Walz
    SLAC, Menlo Park, California
  • C. E. Clayton, C. Huang, C. Joshi, W. Lu, K. A. Marsh, W. B. Mori, M. Zhou
    UCLA, Los Angeles, California
  • T. C. Katsouleas, P. Muggli, E. Oz
    USC, Los Angeles, California
 
  Funding: This work was supported by the Department of Energy contracts DE-AC02-76SF00515, DE-FG02-92ER40727, DE-FG02-92-ER40745 DE-FG02-03ER54721, DE-FC02-01ER41179 and NSF grant Phy-0321345

Recent experiments at SLAC have shown that high gradient acceleration of electrons is achievable in meter scale plasmas. Results from these experiments show that the wakefield is sensitive to parameters in the electron beam which drives it. In the experiment the bunch length and beam waist location were varied systematically at constant charge. Here we investigate the correlation of peak beam current to the decelerating gradient. Limits on the transformer ratio will also be discussed. The results are compared to simulation.

 
FRZKI04 Plasma Accelerators - Progress and the Future 3845
 
  • C. Joshi
    UCLA, Los Angeles, California
 
  In recent months plasma accelerators have set new records: The first laser wakefield accelerator to demonstarte near GeV beam with large charge and good beam quality in a table-top device at LBNL, and the energy-doubling of the SLAC beam in a short plasma channel by the plasma wakefield acceleration technique. These two events, happening at two different laboratories signifies a coming of age of advanced accelerator R&D.  
slides icon Slides  
FRPMS067 Energy Measurement in a Plasma Wakefield Accelerator 4168
 
  • R. Ischebeck, M. K. Berry, I. Blumenfeld, F.-J. Decker, M. J. Hogan, R. H. Iverson, N. A. Kirby, R. Siemann, D. R. Walz
    SLAC, Menlo Park, California
  • C. E. Clayton, C. Huang, C. Joshi, W. Lu, K. A. Marsh, W. B. Mori, M. Zhou
    UCLA, Los Angeles, California
  • T. C. Katsouleas, P. Muggli, E. Oz
    USC, Los Angeles, California
 
  Funding: DOE DE-AC02-76SF00515 (SLAC), DE-FG02-92-ER40745, DE-FG03-92ER40745, DE-FC02-01ER41179, DE-FG03-92ER40727, DE-FG02-03ER54721, DE-F52-03NA00065:A004, DE-AC-0376SF0098, NSF ECS-9632735, NSF-Phy-0321345

Particles are leaving the meter-long plasma wakefield accelerator with a large energy spread. To determine the spectrum of these particles, four diagnostics have been set up. These were used to determine energies of the particles that gain energy in the plasma, those that lose energy by driving the wake and the self-injected particles that are accelerated from rest.

 
FRPMS070 Emittance Measurement of Trapped Electrons from a Plasma Wakefield Accelerator 4183
 
  • N. A. Kirby, M. K. Berry, I. Blumenfeld, F.-J. Decker, M. J. Hogan, R. Ischebeck, R. H. Iverson, R. Siemann, D. R. Walz
    SLAC, Menlo Park, California
  • C. E. Clayton, C. Huang, C. Joshi, W. Lu, K. A. Marsh, W. B. Mori, M. Zhou
    UCLA, Los Angeles, California
  • T. C. Katsouleas, P. Muggli, E. Oz
    USC, Los Angeles, California
 
  Funding: This work was supported by the Department of Energy contracts DE- AC02-76SF00515, DE-FG02-92ER40727, DE-FG02-92-ER40745. DE- FG02-03ER54721, DE-FC02-01ER41179 and NSF grant Phy-0321345

Recent electron beam driven plasma wakefield accelerator experiments carried out at SLAC showed trapping of plasma electrons. These trapped electrons appeared on an energy spectrometer with smaller transverse size than the beam driving the wake. A connection is made between transverse size and emittance; due to the spectrometer?s resolution, this connection allows for placing an upper limit on the trapped electron emittance. The upper limit for the lowest normalized emittance measured in the experiment is 1 mm·mrad.