A   B   C   D   E   F   G   H   I   J   K   L   M   N   O   P   Q   R   S   T   U   V   W   X   Y   Z  

Hicks, W. R.

Paper Title Page
WEPMS059 Performance of the First Refurbished CEBAF Cryomodule 2478
 
  • M. A. Drury, E. Daly, G. K. Davis, J. F. Fischer, C. Grenoble, W. R. Hicks, J. Hogan, K. King, R. Nichols, T. E. Plawski, J. P. Preble, T. M. Rothgeb, H. Wang
    Jefferson Lab, Newport News, Virginia
 
  Funding: U. S. DOE Contract No. DE-AC05-06OR23177. This manuscript has been authored by Jefferson Science Associates, LLC under U. S. DOE Contract No. DE-AC05-06OR23177.

The Thomas Jefferson National Accelerator Facility has begun a cryomodule refurbishment project. The goal of this project is robust 6 GeV, 5 pass operation of the Continuous Electron Beam Accelerator Facility (CEBAF). The scope of the project includes removing, refurbishing and replacing 10 CEBAF cryomodules at a rate of three per year. Refurbishment includes reprocessing of SRF cavities to eliminate field emission and increase the nominal gradient from the original 5 MV/m to 12.5 MV/m. New "dogleg" couplers between the cavity and helium vessel flanges will intercept secondary electrons that produce arcing on the 2 K ceramic window in the Fundamental Power Coupler (FPC). Modification of the Qext of the FPC will allow higher gradient operations. Other changes include new ceramic RF windows for the air to vacuum interface of the FPC and improvements to the mechanical tuners. Any damaged or worn components will be replaced as well. Currently, the first of the refurbished cryomodules has been installed and tested both in the Cryomodule Test Facility and in place in the North Linac of CEBAF. This paper will summarize the results of these tests.

 
WEPMS068 JLab High-Current CW Cryomodules for ERL and FEL Applications 2493
 
  • R. A. Rimmer, R. Bundy, G. Cheng, G. Ciovati, E. Daly, R. Getz, J. Henry, W. R. Hicks, P. Kneisel, S. Manning, R. Manus, K. Smith, M. Stirbet, L. Turlington, L. Vogel, H. Wang, K. Wilson
    Jefferson Lab, Newport News, Virginia
  • F. Marhauser
    JLAB, Newport News, Virginia
 
  Funding: Authored by Jefferson Science Associates, LLC under U. S. DOE Contract No. DE-AC05-06OR23177, and by The Office of Naval Research under contract to the Dept. of Energy.

We describe the developments underway at JLab to develop new CW cryomodules capable of transporting up to Ampere-levels of beam currents for use in ERLs and FELs. Goals include an efficient cell shape, high packing factor for efficient real-estate gradient and very strong HOM damping to push BBU thresholds up by two or more orders of magnitude compared to existing designs. Cavity shape, HOM damping and ancillary components are optimized for this application. Designs are being developed for low-frequency (750 MHz), Ampere-class compact FELs and for high-frequency (1.5 GHz), 100 mA configurations. These designs and concepts can easily be scaled to other frequencies. We present the results of conceptual design studies, simulations and prototype measurements. These modules are being developed for the next generation ERL based high power FELs but may be useful for other applications such as high energy light sources, electron cooling, electron-ion colliders, industrial processing etc.