A   B   C   D   E   F   G   H   I   J   K   L   M   N   O   P   Q   R   S   T   U   V   W   X   Y   Z  

Groening, L.

Paper Title Page
TUPAN012 High Intensity Heavy Ion Beam Emittance Measurements at the GSI UNILAC 1413
 
  • W. B. Bayer, W. Barth, L. A. Dahl, P. Forck, P. Gerhard, L. Groening, I. Hofmann, S. Yaramyshev
    GSI, Darmstadt
  • D.-O. Jeon
    ORNL, Oak Ridge, Tennessee
 
  Funding: We acknowledge the support of the European Community-Research Infrastructure Activity under the FP6 "Structuring the European Research Area" programme (CARE, contract number RII3-CT-2003-506395).

The GSI UNILAC, a heavy ion linac originally dedicated for low current beam operation, together with the synchrotron SIS 18 will serve as an high current injector for FAIR (International Facility for Antiproton and Ion Research). The UNILAC post stripper accelerator consists of five Alvarez tanks with a final energy of 11.4 MeV/u. In order to meet the requirements of FAIR (15emA 238U28+, transverse normalised emittances of 0.8mm mrad and 2.5mm mrad) an UNILAC upgrade program is foreseen to increase the primary beam intensity as well as the beam brilliance. A detailed understanding of the beam dynamics during acceleration and transport of space charge dominated beams is necessary. For this purpose the study of the beam brilliance dependency on the phase advances in the Alvarez DTL is suited. Machine investigations were performed with various beam diagnostics devices established in the UNILAC. Measurements done in 2006 using an high intensity heavy ion beam coincide with the beam dynamics work package of the European JRA "High Intensity Pulsed Proton Injector" (HIPPI). Results of these measurements are presented as well as corresponding beam dynamics simulations.

 
TUPAN017 Development of a Coupled CH Structure for the GSI Proton Injector 1428
 
  • G. Clemente, H. Podlech, U. Ratzinger, R. Tiede
    IAP, Frankfurt am Main
  • L. Groening
    GSI, Darmstadt
  • S. Minaev
    ITEP, Moscow
 
  Funding: CARE (contract No RIICT-2003-506-395), GSI, BMBF

The FAIR facility, under development at GSI, needs a new dedicated proton injector for the production of intense antiprotons secondary beams. This injector will accelerate protons from 3 to 70 MeV at a current of 70 mA, and due to the high voltage gain and shunt impedance will be based on CH cavities powered by a 2.5 MW, 325 MHz klystron. An innovative coupling cell containing one drift tube of length N-beta λ was developed to combine multicell drift tube modules of the CH-type (H210 mode).. In order to study this innovative coupling mechanism a scaled model of the second resonator of GSI Proton injector is under production at IAP. The according full scale prototype, 3 meter long coupled X MV resonator from MeV to MeV is under construction and will be power tested with a 2.5 MW klystron at GSI at the end of 2008. This paper describes in detail the coupled structure together with a general overview of the R&D results achieved on the CH-DTL's cavity.

 
THPMN014 Commissioning of the Linac for the Heidelberg Heavy Ion Cancer Therapy Centre (HIT) 2734
 
  • M. T. Maier, W. Barth, W. B. Bayer, L. A. Dahl, L. Groening, C. M. Kleffner, B. Schlitt, K. Tinschert, H. Vormann, S. Yaramyshev
    GSI, Darmstadt
  • U. Ratzinger, A. Schempp
    IAP, Frankfurt am Main
 
  A clinical facility for cancer therapy using energetic proton and ion beams (C, He and O) is under construction and will be installed at the Radiologische Universitätsklinik in Heidelberg, Germany. It consists of two ECR ion sources, a 7 MeV/u linac injector, and a 6.5 Tm synchrotron to accelerate the ions to final energies of 50-430 MeV/u. The linac comprises a 400 keV/u RFQ and a 7 MeV/u IH-DTL operating at 216.8 MHz. The commissioning of the linac with beam was performed in three steps for the LEBT, the RFQ, and the IH-DTL. For this purpose a versatile beam diagnostic test bench has been used consisting of a slit-grid emittance measurement device, transverse pick-ups providing for time of flight energy measurements, SEM-profile grids, and different devices for beam current measurements. In this contribution the procedure and the results of the successful commissioning in the year 2006 of the linear accelerator are reported.