A   B   C   D   E   F   G   H   I   J   K   L   M   N   O   P   Q   R   S   T   U   V   W   X   Y   Z  

Goddard, B.

Paper Title Page
MOPAN068 Performance with Lead Ions of the LHC Beam Dump System 308
 
  • R. Bruce, B. Goddard, L. K. Jensen, T. Lefevre, W. J.M. Weterings
    CERN, Geneva
 
  The LHC beam dump system must function safely with lead ions. The differences with respect to the LHC proton beams are briefly recalled, and the possible areas for performance concerns discussed, in particular the various beam intercepting devices and the beam instrumentation. Energy deposition simulation results for the most critical elements are presented, and the conclusions drawn for the lead ion operation. The expected performance of the beam instrumentation systems are reviewed in the context of the damage potential of the ion beam and the required functionality of the various safety and post-operational analysis requirements.  
TUODKI02 Optics Considerations for the PS2 739
 
  • M. Benedikt, W. Bartmann, C. Carli, B. Goddard, S. Hancock, J. M. Jowett, Y. Papaphilippou
    CERN, Geneva
 
  CERN envisages replacing the existing Proton Synchrotron (PS) with a larger synchrotron (PS2) capable of injecting at higher energy into the SPS. Since it should increase the performance not only of the LHC but also CNGS and other users of beams from CERN's hadron injector complex, the new accelerator must retain much of the flexibility of the present complex. A number of candidate optics, with and without transition crossing, have been evaluated systematically and compared.  
slides icon Slides  
TUZAC03 LHC Machine Protection 878
 
  • R. Schmidt, R. W. Assmann, E. Carlier, B. Dehning, R. Denz, B. Goddard, E. B. Holzer, V. Kain, B. Puccio, B. Todd, J. A. Uythoven, J. Wenninger, M. Zerlauth
    CERN, Geneva
 
  This paper addresses the imposing challenges of the LHC Machine Protection System.  
slides icon Slides  
TUPAN094 PS2 Injection, Extraction and Beam Transfer Concepts 1598
 
  • B. Goddard, W. Bartmann, M. Benedikt, A. Koschik, T. Kramer
    CERN, Geneva
 
  The replacement of CERN's existing 26 GeV Proton Synchrotron (PS) machine with a separated-function synchrotron PS2 has been identified as an important part of the possible future upgrade programme of the CERN accelerator complex. The PS2 will require a number of new beam transfer systems associated with injection, extraction, beam dumping and transfer. The different requirements are briefly presented, together with an overview of the conceptual design of these systems, based on the initial PS2 parameter set. The required equipment sub-system performance is derived and discussed. Possible limitations are analysed and the impact on the overall design and parameter set is discussed.  
TUPAN096 High Intensity Commissioning of the SPS LSS4 Extraction for CNGS 1604
 
  • V. Kain, E. Carlier, E. H.R. Gaxiola, B. Goddard, M. Gourber-Pace, E. Gschwendtner, M. Meddahi, H. Vincke, H. Vincke, J. Wenninger
    CERN, Geneva
 
  The fast extraction in SPS LSS4 serves both the anti-clockwise ring of the LHC and the CERN Gran Sasso Neutrino facility (CNGS). The latter requires 2 fast extractions of 10.5 microsecond long batches per cycle, 50 milliseconds apart. Each batch will consist of 2.4·10+13 protons at 400 GeV, a factor of 10 in energy density above the equipment damage limit in case of beam loss. Active and passive protection systems are in place to guarantee safe operation and to respect the radiation limits close to the extraction region. In summer 2006 CNGS was commissioned including extraction with high intensity. A thorough setting-up of the extraction was performed as part of the CNGS commissioning, including aperture and beam loss measurements, and defining and checking of interlock thresholds for the extraction trajectory, magnet currents, kicker voltage and beam loss monitors. The various systems and the associated risks are discussed, the commissioning results are summarised and a comparison is made with predictions from simulations.  
TUPAN097 Studies of Beam Losses from Failures of SPS Beam Dump Kickers 1607
 
  • T. Kramer, G. Arduini, O. E. Berrig, E. Carlier, L. Ducimetiere, B. Goddard, A. Koschik, J. A. Uythoven
    CERN, Geneva
 
  The SPS beam dump extraction process was studied in detail to investigate the possibility of operation with reduced kicker voltage and to fully understand the trajectory and loss pattern of the mis-kicked beams. This paper briefly describes the SPS beam dump process, and presents the tracking studies carried out for failure cases. The simulation results are compared to the results of measurements made with low intensity beams.  
TUPAN098 Beam Commissioning of the SPS LSS6 Extraction and TT60 for LHC 1610
 
  • B. Goddard, B. Balhan, E. H.R. Gaxiola, M. Gourber-Pace, L. K. Jensen, V. Kain, A. Koschik, T. Kramer, J. A. Uythoven, H. Vincke, J. Wenninger
    CERN, Geneva
 
  The new fast extraction system in LSS6 of the SPS and the first 100 m of transfer line TT60 was commissioned with low intensity beam in late 2006. The layout and functionality of the main elements are briefly explained, including the various hardware subsystems and the control system. The systems safety procedures, test objectives and measurements performed during the beam commissioning are described.  
TUPAN109 160 MeV H- Injection into the CERN PSB 1628
 
  • W. J.M. Weterings, G. Bellodi, J. Borburgh, T. Fowler, F. Gerigk, B. Goddard, K. Hanke, M. Martini, L. Sermeus
    CERN, Geneva
 
  The H- beam from the proposed LINAC4 will be injected into the four existing rings of the PS Booster at 160 MeV. A substantial upgrade of the injection region is required, including the modification of beam distribution system and the construction of a new H- injection system. This paper discusses beam dynamics and hardware requirements and presents the results of optimisation studies of the injection process for different beam characteristics and scenarios. The resulting conceptual design of the injection region is presented, together with the main hardware modifications and performance specifications.  
THPMN005 Technical Challenges for Head-On Collisions and Extraction at the ILC 2716
 
  • O. Napoly, O. Delferriere, M. Durante, J. Payet, C. Rippon, D. Uriot
    CEA, Gif-sur-Yvette
  • M. Alabau, P. Bambade, J. Brossard, O. Dadoun, C. Rimbault
    LAL, Orsay
  • D. A.-K. Angal-Kalinin, F. Jackson, S. I. Tzenov
    STFC/DL/ASTeC, Daresbury, Warrington, Cheshire
  • R. Appleby
    UMAN, Manchester
  • B. Balhan, J. Borburgh, B. Goddard
    CERN, Geneva
  • Y. Iwashita
    Kyoto ICR, Uji, Kyoto
  • L. Keller
    SLAC, Menlo Park, California
  • S. Kuroda
    KEK, Ibaraki
  • G. L. Sabbi
    LBNL, Berkeley, California
 
  Funding: EUROTeV Project Contract no.011899 RIDS

An interaction region with head-on collisions is considered as an alternative to the baseline ILC configuration. Progress in the final focus optics design includes engineered large bore superconducting final doublet magnets and their 3D magnetic integration in the detector solenoids. Progress on the beam separation optics is based on technical designs of electrostatic separator and special extraction quadripoles. The spent beam extraction is realized by a staged collimation scheme relying on realistic collimators. The impact on the detector background is estimated. The possibility of technical tests of the most challenging components is investigated.