A   B   C   D   E   F   G   H   I   J   K   L   M   N   O   P   Q   R   S   T   U   V   W   X   Y   Z  

Cole, M. D.

Paper Title Page
WEPMS009 Results on 9-cell ILC and 9-cell Re-Entrant Cavities 2343
 
  • H. Padamsee, A. C. Crawford
    CLASSE, Ithaca
  • B. Ashmanskas
    Fermilab, Batavia, Illinois
  • M. D. Cole, A. J. Favale, J. Rathke
    AES, Princeton, New Jersey
 
  Funding: DOE

We have recently upgraded our chemical treatment, high pressure rinsing systems and low temperature RF testing system to prepare and test 9-cell cavities for ILC. After removal of 120 um by BCP we reached 26 MV/m accelerating field limited by the high-field Q-slope. There was no quench and no field emission, showing that our facilities are well qualified. We have also extended our vertical electropolishing system to 9-cell cavities. Previously we have successfully used vertical electropolishing for one-cell cavities of the re-entrant shape to reach 47 MV/m accelerating. Test results on 9-cell electropolished cavities will be presented. AES has manufactured the first 9-cell cavity with re-entrant cell shapes. The surface magnetic field is 10% lower than for the standard TESLA-shape cavity. Half-cells were electropolished 100 um before welding. We will present results on the first tests of the 9-cell re-entrant cavity.

 
WEPMS089 Multipacting Analysis of a Quarter Wave Choke Joint used for Insertion of a Demountable Cathode into a SRF Photoinjector 2544
 
  • A. Burrill, I. Ben-Zvi
    BNL, Upton, Long Island, New York
  • M. D. Cole, J. Rathke
    AES, Princeton, New Jersey
  • P. Kneisel, R. Manus, R. A. Rimmer
    Jefferson Lab, Newport News, Virginia
 
  Funding: Work done under the auspices of the US DOE.

The multipacting phenomena in accelerating structures and coaxial lines are well documented and methods of mitigating or suppressing it are understood. The multipacting that occurs in a quarter wave choke joint designed to mount a cathode insertion stalk into a superconducting RF photoinjector has been analyzed via calculations and experimental measurements and the effect of introducing multipacting suppression grooves into the structure is analyzed. Several alternative choke joint designs are analyzed and suggestions made regarding future choke joint development. Furthermore, the problems encountered in cleaning the choke joint surfaces, factors important in changes to the secondary electron yield, are discussed and evaluated. This design is being implemented on the BNL 1.3 GHz photoinjector, previously used for measurement of the quantum efficiency of bare Nb, to allow for the introduction of other cathode materials for study, and to verify the design functions properly prior to constructing our 703 MHz photoinjector with a similar choke joint design.

 
TUPMS076 Status of R&D Energy Recovery Linac at Brookhaven National Laboratory 1347
 
  • V. Litvinenko, J. Alduino, D. Beavis, I. Ben-Zvi, M. Blaskiewicz, J. M. Brennan, A. Burrill, R. Calaga, P. Cameron, X. Chang, K. A. Drees, G. Ganetis, D. M. Gassner, J. G. Grimes, H. Hahn, L. R. Hammons, A. Hershcovitch, H.-C. Hseuh, A. K. Jain, D. Kayran, J. Kewisch, R. F. Lambiase, D. L. Lederle, C. Longo, G. J. Mahler, G. T. McIntyre, W. Meng, T. C. Nehring, B. Oerter, C. Pai, D. Pate, D. Phillips, E. Pozdeyev, T. Rao, J. Reich, T. Roser, T. Russo, Z. Segalov, J. Smedley, K. Smith, J. E. Tuozzolo, G. Wang, D. Weiss, N. Williams, Q. Wu, K. Yip, A. Zaltsman
    BNL, Upton, Long Island, New York
  • H. Bluem, M. D. Cole, A. J. Favale, D. Holmes, J. Rathke, T. Schultheiss, A. M.M. Todd
    AES, Princeton, New Jersey
  • B. W. Buckley
    CLASSE, Ithaca
  • G. Citver
    Stony Brook University, StonyBrook
  • J. R. Delayen, L. W. Funk, H. L. Phillips, J. P. Preble
    Jefferson Lab, Newport News, Virginia
 
  Funding: Work performed under the auspices of the U. S. Department of Energy and partially funded by the US Department of Defence.

In this paper we present status and plans for the 20-MeV R&D energy recovery linac, which is under construction at Collider Accelerator Department at BNL. The facility is based on high current (up to 0.5 A of average current) super-conducting 2.5 MeV RF gun, single-mode super-conducting 5-cell RF linac and about 20-m long return loop with very flexible lattice. The R&D ERL, which is planned for commissioning in 2008, aims to address many outstanding questions relevant for high current, high brightness energy-recovery linacs.

 
WEOCKI03 Status of the R&D Towards Electron Cooling of RHIC 1938
 
  • I. Ben-Zvi, J. Alduino, D. S. Barton, D. Beavis, M. Blaskiewicz, J. M. Brennan, A. Burrill, R. Calaga, P. Cameron, X. Chang, K. A. Drees, A. V. Fedotov, W. Fischer, G. Ganetis, D. M. Gassner, J. G. Grimes, H. Hahn, L. R. Hammons, A. Hershcovitch, H.-C. Hseuh, D. Kayran, J. Kewisch, R. F. Lambiase, D. L. Lederle, V. Litvinenko, C. Longo, W. W. MacKay, G. J. Mahler, G. T. McIntyre, W. Meng, B. Oerter, C. Pai, G. Parzen, D. Pate, D. Phillips, S. R. Plate, E. Pozdeyev, T. Rao, J. Reich, T. Roser, A. G. Ruggiero, T. Russo, C. Schultheiss, Z. Segalov, J. Smedley, K. Smith, T. Tallerico, S. Tepikian, R. Than, R. J. Todd, D. Trbojevic, J. E. Tuozzolo, P. Wanderer, G. Wang, D. Weiss, Q. Wu, K. Yip, A. Zaltsman
    BNL, Upton, Long Island, New York
  • D. T. Abell, G. I. Bell, D. L. Bruhwiler, R. Busby, J. R. Cary, D. A. Dimitrov, P. Messmer, V. H. Ranjbar, D. S. Smithe, A. V. Sobol, P. Stoltz
    Tech-X, Boulder, Colorado
  • A. V. Aleksandrov, D. L. Douglas, Y. W. Kang
    ORNL, Oak Ridge, Tennessee
  • H. Bluem, M. D. Cole, A. J. Favale, D. Holmes, J. Rathke, T. Schultheiss, J. J. Sredniawski, A. M.M. Todd
    AES, Princeton, New Jersey
  • A. V. Burov, S. Nagaitsev, L. R. Prost
    Fermilab, Batavia, Illinois
  • Y. S. Derbenev, P. Kneisel, J. Mammosser, H. L. Phillips, J. P. Preble, C. E. Reece, R. A. Rimmer, J. Saunders, M. Stirbet, H. Wang
    Jefferson Lab, Newport News, Virginia
  • V. V. Parkhomchuk, V. B. Reva
    BINP SB RAS, Novosibirsk
  • A. O. Sidorin, A. V. Smirnov
    JINR, Dubna, Moscow Region
 
  Funding: Work done under the auspices of the US DOE with support from the US DOD.

The physics interest in a luminosity upgrade of RHIC requires the development of a cooling-frontier facility. Detailed cooling calculations have been made to determine the efficacy of electron cooling of the stored RHIC beams. This has been followed by beam dynamics simulations to establish the feasibility of creating the necessary electron beam. Electron cooling of RHIC at collisions requires electron beam energy up to about 54 MeV at an average current of between 50 to 100 mA and a particularly bright electron beam. The accelerator chosen to generate this electron beam is a superconducting Energy Recovery Linac (ERL) with a superconducting RF gun with a laser-photocathode. An intensive experimental R&D program engages the various elements of the accelerator: Photocathodes of novel design, superconducting RF electron gun of a particularly high current and low emittance, a very high-current ERL cavity and a demonstration ERL using these components.

 
slides icon Slides