A   B   C   D   E   F   G   H   I   J   K   L   M   N   O   P   Q   R   S   T   U   V   W   X   Y   Z  

Campisi, I. E.

Paper Title Page
MOPAS079 Spallation Neutron Source (SNS) High Pulse Repetition Rate Considerations 614
 
  • M. P. McCarthy, D. E. Anderson, I. E. Campisi, F. Casagrande, R. I. Cutler, G. W. Dodson, J. Galambos, D. P. Gurd, Y. W. Kang, K.-U. Kasemir, S.-H. Kim, H. Ma, B. W. Riemer, J. P. Schubert, M. P. Stockli
    ORNL, Oak Ridge, Tennessee
 
  Funding: SNS is managed by UT-Battelle, LLC, under contract DE-AC05-00OR22725 for the U. S. Department of Energy.

Increasing the pulse repetition rate (PRR) of the SNS Linac to its designed maximum of 60 Hz to provide 1.4 MW of beam on target is in progress. Operation above 60 Hz in the future to provide beam to a second target is also being considered. Increasing the PRR to 80 Hz would allow the additional pulses to be diverted to a second target. This paper discusses the impact of increasing the PRR on the SNS infrastructure including Radio Frequency (RF) systems and structures, the ion source, cryogenics, controls and the target.

 
MOPAS082 Status of the Spallation Neutron Source Superconducting RF Facilities 623
 
  • D. Stout, S. Assadi, I. E. Campisi, F. Casagrande, M. T. Crofford, W. R. DeVan, X. Geng, T. W. Hardek, S. Henderson, M. P. Howell, Y. W. Kang, W. C. Stone, W. H. Strong, D. C. Williams, P. A. Wright
    ORNL, Oak Ridge, Tennessee
 
  Funding: SNS is managed by UT-Battelle, LLC, under contract DE-AC05-00OR22725 for the U. S. Department of Energy

The SNS project was completed with only limited SRF facilities installed as part of the project, namely a 5 MW, 805 MHz RF test stand, a fundamental power coupler processing system, a concrete test cave shell, and temporary cleaning/assembly facilities. A concerted effort has been initiated to install the infrastructure and equipment necessary to maintain and repair the superconducting Linac, and to support power upgrade R&D. Installation of a Class10/100/10,000 cleanroom and outfitting of the test cave with RF, vacuum, controls, personnel protection and cryogenics systems is underway. A horizontal cryostat, which can house a helium vessel/cavity and fundamental power coupler for full power, pulsed testing, is being procured. Equipment for cryomodule assembly/disassembly and cavity processing also is being designed. This effort, while derived from the experience of the SRF community, will provide a unique high power test capability as well as long term maintenance capabilities. This paper presents the current status and the future plans for the SNS SRF facilities.

 
WEPMS018 Superconducting Materials Testing with a High-Q Copper RF Cavity 2370
 
  • A. Canabal, T. Tajima
    LANL, Los Alamos, New Mexico
  • G. B. Bowden, V. A. Dolgashev, J. R. Lewandowski, C. D. Nantista, S. G. Tantawi
    SLAC, Menlo Park, California
  • I. E. Campisi
    ORNL, Oak Ridge, Tennessee
 
  Magnesium diboride (MgB2) has a transition temperature (Tc) of ~40 K, i.e., about 4 times higher than niobium (Nb) that has been used for recent accelerators. The studies in the last 3 years have shown that it could have about one order of magnitude less RF surface resistance (Rs) than Nb and much less power dependence compared to high-Tc materials such as YBCO up to ~400 Oe. The tests to check the RF critical magnetic field, an important parameter to determine the feasibility for accelerator application, are underway. We are planning to test different thickness films and with different coating methods. This paper describes the results obtained so far. One of the objectives is to verify Gurevich's theory of getting higher critical field than Nb by adding a very thin layer (less than penetration depth) to Nb. In addition, some CW tests on power dependence up to higher magnetic fields are planned and some results will be shown if available at the time of conference.  
WEPMS072 Status and Performance of the Spallation Neutron Source Superconducting Linac 2502
 
  • I. E. Campisi, S. Assadi, F. Casagrande, M. S. Champion, M. T. Crofford, G. W. Dodson, J. Galambos, M. Giannella, S. Henderson, M. P. Howell, Y. W. Kang, K.-U. Kasemir, S.-H. Kim, Z. Kursun, P. Ladd, H. Ma, D. Stout, W. H. Strong, Y. Zhang
    ORNL, Oak Ridge, Tennessee
 
  Funding: SNS is managed by UT-Battelle, LLC, under contract DE-AC05-00OR22725 for the U. S. Department of Energy

The Superconducting Linac at SNS has been operating with beam for almost two years. As the first operational pulsed superconducting linac, many of the aspect of its performance were unknown and unpredictable. A lot of experience has been gathered during the commissioning of its components, during the beam turn on and during operation at increasingly higher beam power. Some cryomodules have been cold for well over two years and have been extensively tested. The operation has been consistently conducted at 4.4 K and 10 and 15 pulses per second, with some cryomodules tested at 30 and 60 pps and some tests performed at 2 K. Careful balance between safe operational limits and the study of conditions, parameters and components that create physical limits has been achieved. This paper presents the experience and the performance of the superconducting cavities and of the associated systems with and without beam.

 
WEPMS076 Status of the SNS Cryomodule Test 2511
 
  • S.-H. Kim, I. E. Campisi, F. Casagrande, M. T. Crofford, Y. W. Kang, Z. Kursun, D. Stout, A. V. Vassioutchenko
    ORNL, Oak Ridge, Tennessee
 
  Funding: SNS is managed by UT-Battelle, LLC, under contract DE-AC05-00OR22725 for the U. S. Department of Energy

The cryomodule tests are on going to have better understandings of physics as a whole and eventually to provide safe and reliable operation for neutron production. Some features are revealed to be interesting issues and need more attentions than expected, such as operating condition, collective effects between cavities, HOM coupler issues, end-group stability, cavity-coupler interactions, and vacuum/gas physics, waiting for more investigations. Up to now SNS cryomodules were mainly tested at 4.4 K, 10 pulse per second (pps) and 30 pps/60 pps tests are under progress. This paper presents the experiences and the observations during tests of cryomodules.

 
WEPMS080 SRF Cavity Transient Beam Loading Detection - Simulation and Measurement 2517
 
  • Y. Zhang, I. E. Campisi, C. Deibele, J. Galambos, S. Henderson, Y. W. Kang, H. Ma, J. L. Wilson
    ORNL, Oak Ridge, Tennessee
 
  Funding: SNS is managed by UT-Battelle, LLC, under contract DE-AC05-00OR22725 for the U. S. Department of Energy.

Beam phase measurement based on detection of transient beam loading signal in a Superconducting (SC) cavity is utilized to setup the cavity synchronous phase. It has the potential to become a fast tune-up technique for a high intensity SC electron linac, as cavity phase could be determined precisely with only a few beam pulses. The paper introduces a transient detector study in the Spallation Neutron Source (SNS) proton linac, and discusses one of the major challenges - stochastic noise in the cavity RF system, which deteriorates the precision and increases the time needed for phase measurement with this technique. We analyze the influence of RF noise to the phase measurement in a simulation study with a beam-cavity model. Beam signal measurement with the cavity Low Level RF (LLRF) system and the initial experiment of prototype detectors are briefly introduced.