A   B   C   D   E   F   G   H   I   J   K   L   M   N   O   P   Q   R   S   T   U   V   W   X   Y   Z  

Brown, K. A.

Paper Title Page
TUOCKI02 Summary of the RHIC Performance during the FY07 Heavy Ion Run 722
 
  • K. A. Drees, L. Ahrens, J. G. Alessi, M. Bai, D. S. Barton, J. Beebe-Wang, M. Blaskiewicz, J. M. Brennan, K. A. Brown, D. Bruno, J. J. Butler, R. Calaga, P. Cameron, R. Connolly, T. D'Ottavio, W. Fischer, W. Fu, G. Ganetis, J. W. Glenn, M. Harvey, T. Hayes, H.-C. Hseuh, H. Huang, J. Kewisch, R. C. Lee, V. Litvinenko, Y. Luo, W. W. MacKay, G. J. Marr, A. Marusic, R. J. Michnoff, C. Montag, J. Morris, B. Oerter, F. C. Pilat, V. Ptitsyn, T. Roser, J. Sandberg, T. Satogata, C. Schultheiss, F. Severino, K. Smith, S. Tepikian, D. Trbojevic, N. Tsoupas, J. E. Tuozzolo, A. Zaltsman, S. Y. Zhang
    BNL, Upton, Long Island, New York
 
  Funding: Work performed under Contract Number DE-AC02-98CH10886 under the auspices of the US Department of Energy.

After the last successful RHIC Au-Au run in 2004 (Run-4), RHIC experiments now require significantly enhanced luminosity to study very rare events in heavy ion collisions. RHIC has demonstrated its capability to operate routinely above its design average luminosity per store of 2x1026 cm-2 s-1. In Run-4 we already achieved 2.5 times the design luminosity in RHIC. This luminosity was achieved with only 40% of bunches filled, and with β* = 1 m. However, the goal is to reach 4 times the design luminosity, 8x1026 cm-2 s-1, by reducing the beta* value and increasing the number of bunches to the accelerator maximum of 111. In addition, the average time in store should be increased by a factor of 1.1 to about 60% of calendar time. We present an overview of the changes that increased the instantaneous luminosity and luminosity lifetime, raised the reliability, and improved the operational efficiency of RHIC Au-Au operations during Run-7.

 
slides icon Slides  
TUODKI04 Accelerating Polarized Protons to 250 GeV 745
 
  • M. Bai, L. Ahrens, I. G. Alekseev, J. G. Alessi, J. Beebe-Wang, M. Blaskiewicz, A. Bravar, J. M. Brennan, K. A. Brown, D. Bruno, G. Bunce, J. J. Butler, P. Cameron, R. Connolly, T. D'Ottavio, J. DeLong, K. A. Drees, W. Fischer, G. Ganetis, C. J. Gardner, J. W. Glenn, T. Hayes, H.-C. Hseuh, H. Huang, P. F. Ingrassia, J. S. Laster, R. C. Lee, A. U. Luccio, Y. Luo, W. W. MacKay, Y. Makdisi, G. J. Marr, A. Marusic, G. T. McIntyre, R. J. Michnoff, C. Montag, J. Morris, P. Oddo, B. Oerter, J. Piacentino, F. C. Pilat, V. Ptitsyn, T. Roser, T. Satogata, K. Smith, S. Tepikian, D. Trbojevic, N. Tsoupas, J. E. Tuozzolo, M. Wilinski, A. Zaltsman, A. Zelenski, K. Zeno, S. Y. Zhang
    BNL, Upton, Long Island, New York
  • D. Svirida
    ITEP, Moscow
 
  Funding: The work was performed under the US Department of Energy Contract No. DE-AC02-98CH1-886, and with support of RIKEN(Japan) and Renaissance Technologies Corp.(USA)

The Relativistic Heavy Ion Collider~(RHIC) as the first high energy polarized proton collider was designed to provide polarized proton collisions at a maximum beam energy of 250GeV. It has been providing collisions at a beam energy of 100GeV since 2001. Equipped with two full Siberian snakes in each ring, polarization is preserved during the acceleration from injection to 100GeV with careful control of the betatron tunes and the vertical orbit distortions. However, the intrinsic spin resonances beyond 100GeV are about a factor of two stronger than those below 100GeV making it important to examine the impact of these strong intrinsic spin resonances on polarization survival and the tolerance for vertical orbit distortions. Polarized protons were accelerated to the record energy of 250GeV in RHIC with a polarization of 45\% measured at top energy in 2006. The polarization measurement as a function of beam energy also shows some polarization loss around 136GeV, the first strong intrinsic resonance above 100GeV. This paper presents the results and discusses the sensitivity of the polarization survival to orbit distortions.

 
slides icon Slides  
TUODKI05 Overcoming Depolarizing Resonances in the AGS with Two Helical Partial Snakes 748
 
  • H. Huang, L. Ahrens, M. Bai, K. A. Brown, C. J. Gardner, J. W. Glenn, F. Lin, A. U. Luccio, W. W. MacKay, T. Roser, S. Tepikian, N. Tsoupas, K. Yip, K. Zeno
    BNL, Upton, Long Island, New York
 
  Funding: Work performed under contract No. DE-AC02-98CH1-886 with the auspices of the DoE of United States, and support of RIKEN(Japan).

Dual partial snake scheme has provided polarized proton beams with 1.5*1011 intensity and 65% polarization for RHIC spin program. To overcome the residual polarization loss due to horizontal resonances in the AGS, a new string of quadrupoles have been added. The horizontal tune can now be set in the spin tune gap generated by the two partial snakes, such that horizontal resonances are avoided. This paper presents the accelerator setup and preliminary results.

 
slides icon Slides  
TUPAS096 Setup and Performance of the RHIC Injector Accelerators for the 2007 Run with Gold Ions 1862
 
  • C. J. Gardner, L. Ahrens, J. G. Alessi, J. Benjamin, M. Blaskiewicz, J. M. Brennan, K. A. Brown, C. Carlson, W. Fischer, J. W. Glenn, M. Harvey, T. Hayes, H. Huang, G. J. Marr, J. Morris, F. C. Pilat, T. Roser, F. Severino, K. Smith, D. Steski, P. Thieberger, N. Tsoupas, A. Zaltsman, K. Zeno
    BNL, Upton, Long Island, New York
 
  Funding: Work performed under the auspices of the US Department of Energy.

Gold ions for the 2007 run of the Relativistic Heavy Ion Collider (RHIC) at Brookhaven National Laboratory (BNL) are accelerated in the Tandem, Booster and AGS prior to injection into RHIC. The setup and performance of this chain of accelerators will be reviewed with a focus on improvements in the quality of beam delivered to RHIC. In particular, more uniform stripping foils between Booster and AGS, and a new bunch merging scheme in AGS promise to provide beam bunches with reduced longitudinal emittance for RHIC.

 
THPAS011 Investigation of Residual Vertical Intrinsic Resonances with Dual Partial Siberian Snakes in the AGS 3534
 
  • F. Lin, S.-Y. Lee
    IUCF, Bloomington, Indiana
  • L. Ahrens, M. Bai, K. A. Brown, E. D. Courant, J. W. Glenn, H. Huang, A. U. Luccio, W. W. MacKay, T. Roser, N. Tsoupas
    BNL, Upton, Long Island, New York
 
  Funding: The work was performed under the US Department of Energy Contract No. DE-AC02-98CH1-886, No. DE-FG02-92ER40747, NSF PHY-0552389, and with support of RIKEN(Japan) and Renaissance Technologies Corp.(USA)

Two partial helical dipole snakes were found to be able to overcome all imperfection and intrinsic spin resonances provided that the vertical betatron tunes were maintained in the spin tune gap near the integer 9. Recent vertical betatron tune scan showed that the two weak resonances at the beginning of the acceleration cycle may be the cause of polarization loss. This result has been confirmed by the vertical polarization profile measurement, and spin tracking simulations. Possible cure of the remaining beam polarization is discussed.

 
THPAS102 Uniform Beam Distributions at the Target of the NSRL Beam Transfer Line 3720
 
  • N. Tsoupas, L. Ahrens, K. A. Brown, I.-H. Chiang, C. J. Gardner, W. W. MacKay, P. H. Pile, A. Rusek
    BNL, Upton, Long Island, New York
 
  Funding: Work supported by the US Department of Energy

Uniform irradiation of biological or material samples with charged particle beams is desired by experimentalist because it reduces radiation-dose-errors which are introduced by a non-uniform irradiation of the samples. In this paper we present results of uniform beams produced in the NASA SPACE RADIATION LABORATORY (NSRL) at the Brookhaven National Laboratory (BNL) by a method which was conceived theoretically and tested experimentally at BNL. This method* of producing uniform beams in the transverse beam direction, is based on purely magnetic focusing of the beam and requires no collimation of the beam or any other type of beam interaction with materials. The method is favorably compared with alternative methods** of producing uniform beam distributions normal to the beam direction and can be applied to the whole energy spectrum of the charged particle beams that are delivered by the Booster synchrotron at BNL.

*Uniform Particle Beam Distribution Produced by Octupole Focusing N. Tsoupas et. al. NSE: 126, 71-79 (1997)
**Review of Ion Beam Therapy: Present and Future J. Alonso LBNL EPAC 2000

 
THPAS103 Design of a Thin Quadrupole to be Used in the AGS Synchrotron 3723
 
  • N. Tsoupas, L. Ahrens, R. Alforque, M. Bai, K. A. Brown, E. D. Courant, J. W. Glenn, H. Huang, A. K. Jain, W. W. MacKay, M. Okamura, T. Roser, S. Tepikian
    BNL, Upton, Long Island, New York
 
  Funding: Work supported by the US Department of Energy

The AGS synchrotron employs two partial helical snakes* to preserve the polarization of the proton beam during acceleration in the AGS. The effect of the helical snakes on the beam optics is significant at injection energy, with the effect greatly diminishing early in the acceleration cycle. In order to compensate for the effect of the snakes on the beam optics, we have introduced eight compensation quadrupoles in straight sections of the AGS at the proximity of the partial snakes. At injection the strength of these eight quads is set at a high value but ramped down to zero when the effect of the snakes diminishes. Four of the compensation quadrupoles had to be placed in very short straight sections therefore had to be 'thin' with a length of ~30 cm. The 'thin' quadrupoles were laminated and designed to minimize the strength of the dodecoupole harmonic. The thickness of the lamination was also calculated** to keep the ohmic losses generated by the eddy currents in the laminations below an acceptable limit. Comparison of the measured and calculated harmonics will be presented and the ohmic losses due to the eddy currents, as a function of time during rumping will be discussed.

* H. Huang, et al., Proc. EPAC06, (2006), p. 273.** OPERA computer code. Vector Fields Inc.