Overcoming Depolarizing Resonances in the AGS with Two Helical Partial Snakes

H. Huang, L.A. Ahrens, M. Bai, K.A. Brown, C. Gardner,J.W. Glenn, F. Lin, A.U. Luccio, W.W. MacKay, T. Roser,S. Tepikian, N. Tsoupas, K. Yip, A. K. Zeno

June 26, 2007 PAC07

Depolarizing Resonances in the AGS

Imperfection Resonances

arising from sampling of error fields, fields due to closed orbit errors, etc.

Gy=n (integer) Gy=5,6,...45

Vertical Intrinsic Resonances

arise from sampling of focusing fields due to finite beam emittance. $G\gamma = kP \pm v_y$ In the AGS, P=12: $G\gamma = 0 + v_y$, $24 \pm v_y$, $48 - v_y$, $12 + v_y$, $36 \pm v_y$ **Horizontal Intrinsic Resonances**

1. horizontal non-vertical stable spin direction due to strong partial snake interaction with horizontal motion.

2. betatron motion coupled to the vertical betatron motion by coupling elements: solenoid, helical magnet.

 $G\gamma = k \pm v_x$

Partial Snake Resonances

strength proportional to nearby intrinsic resonance strength. $G\gamma{=}kP{\pm}m\nu_y~$, m>1

Spin Dynamics

- Partial snake generates spin tune gap.
- Spin tune gap is generated with a partial snake:

 $\cos \pi v_s = \cos (\delta/2) \cos G \gamma \pi$

- v_s can not be an integer, avoided all imperfection resonances
- Put betatron tunes into the spin tune gap, avoid all intrinsic resonances

Partial Snake Design

Normal Conducting partial snake (warm snake)

Super-Conducting partial snake (cold snake)

Spin Tune and Fractional Vertical Tune

With two helical magnets installed, the lattice is largely distorted at low energies. It took quite a lot efforts to set the vertical tune close to integer. Vertical tune is higher than 8.98 at all major intrinsic resonances. It is even as high as 8.99 at 36+v.

10%

5.9%

Gγ

Polarization as Function of Vertical Tunes

Snake resonance effect is clearly seen.

Polarization Stays High with High Intensity

Push Horizontal Tune Near Integer

- The idea is to put horizontal tune near 9 (~8.95) while maintain vertical tune close to 9 (~8.98). Both tunes are within the spin tune gap.
- With the fractional part of the two tunes are so close, the coupling has to be corrected very well. The skew quads are powered to minimize the coupling.
- Since the horizontal resonance strength are very weak, the horizontal tune does not need to be so as close to integer as vertical tune.
- A stronger cold snake is needed for both betatron tunes in the spin tune gap.
- Twelve quads were added to the vertical quad string.

Tune Plot at Extraction Energy

Betatron Tune and Spin Tune

Better Horizontal Polarization Profile for High v_x

Summary

- 65% polarization with 1.5×10^{11} intensity achieved with two partial snakes in the AGS.
- The following partial snake combination gave the best polarization: 10% cold snake and 5.9% warm snake.
- Four compensation quads for each snake are essential. The lattice is easier to handle.
- The intensity dependence is very benign with this setup.
- With a stronger cold partial snake, moving horizontal tune into the spin tune gap in the later part of the energy ramp gives better polarization.
- Work continues to push both polarization and intensity high.

Thursday Afternoon: THPAS011 F. Lin, et al., Investigation of Residual Vertical Intrinsic Resonances with Dual Partial Siberian Snakes in the AGS