A   B   C   D   E   F   G   H   I   J   K   L   M   N   O   P   Q   R   S   T   U   V   W   X   Y   Z  

Blair, G. A.

Paper Title Page
THOAC01 ATF Extraction Line Laser-Wire System 2636
 
  • L. Deacon, G. E. Boorman, L. Deacon
    Royal Holloway, University of London, Surrey
  • A. Aryshev, H. Hayano, K. Kubo, N. Terunuma, J. Urakawa
    KEK, Ibaraki
  • G. A. Blair, S. T. Boogert, A. Bosco, L. Corner, N. Delerue, F. Gannaway, D. F. Howell, V. Karataev, M. Newman, A. Reichold, R. Senanayake, R. Walczak
    JAI, Oxford
  • B. Foster
    OXFORDphysics, Oxford, Oxon
 
  Funding: PPARC LC-ABD Collaboration Royal Society Daiwa Foundation Commission of European Communities under the 6th Framework Programme Structuring the European Research Area, contract number RIDS-011899

The ATF extraction line laser-wire (LW) aims to achieve a micron-scale laser spot size and to verify that micron-scale beam profile measurements can be performed at the International Linear Collider beam delivery system. Recent upgrades to the LW system are presented together with recent results including the first use of the LW as a beam diagnostic tool.

 
slides icon Slides  
MOPAN110 A Technique for High-frequency Scanning of High Power Laser Light for Laser-wire Scanners at Electrons Accelerators 422
 
  • A. Bosco, G. A. Blair, S. T. Boogert, G. E. Boorman
    Royal Holloway, University of London, Surrey
 
  Funding: Work supported in part by PPARC LC-ABD Collaboration and the Commission of European Communities under the 6th Framework Programme Structuring the European Research Area, contract number RIDS-011899.

Electro-optic techniques might allow implementing a laserwire scanner for intra-train scanning at the ILC with scanning speed in excess of 100 kHz. A scanner capable of running at such a rate would in fact provide information about the particle beam size in about one hundred different positions along the bunch train (approximately 1ms long for the ILC*). The design of an electro-optic deflector capable to scan within 10-100 microsecond is presented, discussed and analytically treated.

* ILC Baseline Conceptual Design (2006).: http://www.linearcollider.org/.

 
WEOCC03 Halo Estimates and Simulations for Linear Colliders 2041
 
  • H. Burkhardt, A. Latina, L. Neukermans, D. Schulte
    CERN, Geneva
  • I. V. Agapov, G. A. Blair
    Royal Holloway, University of London, Surrey
  • F. Jackson
    STFC/DL/ASTeC, Daresbury, Warrington, Cheshire
 
  Funding: This work is supported by the Commission of the European Communities under the 6th Framework Programme "Structuring the European Research Area", contract number RIDS-011899.

Halo simulations and estimates are important for the design of future linear accelerators. We present simulations performed for the ILC and CLIC and compare these with semi-analytical estimates and other simulations.

 
slides icon Slides  
THPMN072 Material Damage Test for ILC Collimators 2868
 
  • J.-L. Fernandez-Hernando
    STFC/DL/ASTeC, Daresbury, Warrington, Cheshire
  • G. A. Blair, S. T. Boogert
    Royal Holloway, University of London, Surrey
  • G. Ellwood, R. J.S. Greenhalgh
    STFC/RAL, Chilton, Didcot, Oxon
  • L. Keller
    SLAC, Menlo Park, California
  • N. K. Watson
    Birmingham University, Birmingham
 
  Simulations were completed to determine the energy deposition of an ILC bunch using FLUKA , Geant4 and EGS4 to a set of different spoiler designs. These shower simulations were used as inputs to thermal and mechanical studies using ANSYS. This paper presents different proposals to carry out a material damage test beam that would benchmark the energy deposition simulations and the ANSYS studies and give the researchers valuable data which will help achieve a definitive ILC spoiler design.  
WEOCAB01 Design of the Beam Delivery System for the International Linear Collider 1985
 
  • A. Seryi, J. A. Amann, R. Arnold, F. Asiri, K. L.F. Bane, P. Bellomo, E. Doyle, A. F. Fasso, L. Keller, J. Kim, K. Ko, Z. Li, T. W. Markiewicz, T. V.M. Maruyama, K. C. Moffeit, S. Molloy, Y. Nosochkov, N. Phinney, T. O. Raubenheimer, S. Seletskiy, S. Smith, C. M. Spencer, P. Tenenbaum, D. R. Walz, G. R. White, M. Woodley, M. Woods, L. Xiao
    SLAC, Menlo Park, California
  • I. V. Agapov, G. A. Blair, S. T. Boogert, J. Carter
    Royal Holloway, University of London, Surrey
  • M. Alabau, P. Bambade, J. Brossard, O. Dadoun
    LAL, Orsay
  • M. Anerella, A. K. Jain, A. Marone, B. Parker
    BNL, Upton, Long Island, New York
  • D. A.-K. Angal-Kalinin, C. D. Beard, J.-L. Fernandez-Hernando, P. Goudket, F. Jackson, J. K. Jones, A. Kalinin, P. A. McIntosh
    STFC/DL/ASTeC, Daresbury, Warrington, Cheshire
  • R. Appleby
    UMAN, Manchester
  • J. L. Baldy, D. Schulte
    CERN, Geneva
  • L. Bellantoni, A. I. Drozhdin, V. S. Kashikhin, V. Kuchler, T. Lackowski, N. V. Mokhov, N. Nakao, T. Peterson, M. C. Ross, S. I. Striganov, J. C. Tompkins, M. Wendt, X. Yang
    Fermilab, Batavia, Illinois
  • K. Buesser
    DESY, Hamburg
  • P. Burrows, G. B. Christian, C. I. Clarke, A. F. Hartin
    OXFORDphysics, Oxford, Oxon
  • G. Burt, A. C. Dexter
    Cockcroft Institute, Warrington, Cheshire
  • J. Carwardine, C. W. Saunders
    ANL, Argonne, Illinois
  • B. Constance, H. Dabiri Khah, C. Perry, C. Swinson
    JAI, Oxford
  • O. Delferriere, O. Napoly, J. Payet, D. Uriot
    CEA, Gif-sur-Yvette
  • C. J. Densham, R. J.S. Greenhalgh
    STFC/RAL, Chilton, Didcot, Oxon
  • A. Enomoto, S. Kuroda, T. Okugi, T. Sanami, Y. Suetsugu, T. Tauchi
    KEK, Ibaraki
  • A. Ferrari
    UU/ISV, Uppsala
  • J. Gronberg
    LLNL, Livermore, California
  • Y. Iwashita
    Kyoto ICR, Uji, Kyoto
  • W. Lohmann
    DESY Zeuthen, Zeuthen
  • L. Ma
    STFC/DL, Daresbury, Warrington, Cheshire
  • T. M. Mattison
    UBC, Vancouver, B. C.
  • T. S. Sanuki
    University of Tokyo, Tokyo
  • V. I. Telnov
    BINP SB RAS, Novosibirsk
  • E. T. Torrence
    University of Oregon, Eugene, Oregon
  • D. Warner
    Colorado University at Boulder, Boulder, Colorado
  • N. K. Watson
    Birmingham University, Birmingham
  • H. Y. Yamamoto
    Tohoku University, Sendai
 
  The beam delivery system for the linear collider focuses beams to nanometer sizes at the interaction point, collimates the beam halo to provide acceptable background in the detector and has a provision for state-of-the art beam instrumentation in order to reach the physics goals. The beam delivery system of the International Linear Collider has undergone several configuration changes recently. This paper describes the design details and status of the baseline configuration considered for the reference design.  
slides icon Slides  
THPAN068 Wakefield Models for Particle Tracking Codes 3378
 
  • A. Latina, G. Rumolo, D. Schulte
    CERN, Geneva
  • R. J. Barlow, A. Bungau
    UMAN, Manchester
  • G. A. Blair
    Royal Holloway, University of London, Surrey
  • J. D.A. Smith
    Lancaster University, Lancaster
 
  Wakefields have a considerable effect on beam dynamics and they must not be neglected for emittance growth studies, background estimates and other problems. The codes used for these problems are normally not capable of self-consistent wakefield calculations. They should thus be extended with either analytical models or export the wakefields numerically evaluated with other codes (such as Gdfidl) when analytical models are not feasible. We discuss both approaches and present their implementation in PLACET, MERLIN and BDSIM. The simulation results for the ILC and CLIC beam delivery systems are given as an example. Results produced with different codes are compared.  
FRPMN094 Beam Profile Measurements with the 2-D Laser-Wire at PETRA 4303
 
  • M. T. Price, G. A. Blair, S. T. Boogert, G. E. Boorman, A. Bosco, S. Malton
    Royal Holloway, University of London, Surrey
  • K. Balewski, Eckhard. Elsen, V. Gharibyan, H.-C. Lewin, F. Poirier, S. Schreiber, N. J. Walker, K. Wittenburg
    DESY, Hamburg
  • T. Kamps
    BESSY GmbH, Berlin
 
  Funding: Work supported by the PPARC LC-ABD collaboration and the Commission of the European Communities under the 6th Framework Programme Structuring the European Research Area, contract number RIDS-011899.

The current PETRA II Laser-Wire system, being developed for the ILC and PETRA III, uses a piezo-driven mirror to scan laser light across an electron bunch. This paper reports on the recently installed electron-beam finding system, presenting recent horizontal and vertical profile scans with corresponding studies.