A   B   C   D   E   F   G   H   I   J   K   L   M   N   O   P   Q   R   S   T   U   V   W   X   Y   Z  

Bhat, C. M.

Paper Title Page
WEOCKI04 Longitudinal Momentum Mining of Antiprotons at the Fermilab Recycler: Past, Present, and Future 1941
 
  • C. M. Bhat, B. Chase, C. Gattuso, P. W. Joireman
    Fermilab, Batavia, Illinois
 
  Funding: Operated by Universities Research Association, Inc. for the U. S. Department of Energy under contract DE-AC02-76CH03000.

The Recycler is the primary antiproton repository for the Tevatron collider at Fermilab. Stored antiproton beam intensity has been steadily increased to about 450·1010 over the last three years. We have used the technique of longitudinal momentum mining* in the Recycler to extract constant intensity and constant longitudinal emittance antiproton bunches for collider operation since early 2005. Since then, the Recycler has played a critical role in the luminosity performance of the Tevatron; the peak proton-antiproton luminosity has been raised by a factor of about three and a world record luminosity of 2.31·1032cm-2s-1 has been achieved. Recently, many improvements have been implemented in the antiproton mining and stacking schemes used in the Recycler to handle higher intensity beam. In this paper we discuss morphing during antiproton stacking, reducing longitudinal emittance dilution, and use of soft mining buckets to maintain low peak density and control the beam instability during mining. In addition we present past and current performance of mining and beam stacking RF manipulations.

* C. M. Bhat, Phys. Letts. A Vol. 330 (2004), p 481

 
slides icon Slides  
THPMN095 Muon Bunch Coalescing 2930
 
  • R. P. Johnson
    Muons, Inc, Batavia
  • C. M. Ankenbrandt, C. M. Bhat, M. Popovic
    Fermilab, Batavia, Illinois
  • S. A. Bogacz, Y. S. Derbenev
    Jefferson Lab, Newport News, Virginia
 
  Funding: Supported in part by DOE STTR grants DE-FG02-04ER86191 and -05ER86253.

The idea of coalescing multiple muon bunches at high energy to enhance the luminosity of a muon collider provides many advantages. It circumvents space-charge, beam loading, and wakefield problems of intense low-energy bunches while restoring the synergy between muon colliders and neutrino factories based on muon storage rings. A sampling of initial conceptual design work for a coalescing ring is presented here.

 
THPMN097 Envelope and Multi-slit Emittance Measurements at Fermilab A0-Photoinjector and Comparison with Simulations 2936
 
  • C. M. Bhat, J.-P. Carneiro, R. P. Fliller, G. M. Kazakevich, J. K. Santucci
    Fermilab, Batavia, Illinois
 
  Funding: Operated by Universities Research Association, Inc. for the U. S. Department of Energy under contract DE-AC02-76CH03000.

Recently we have measured the transverse emittance using both multi-screen as well as muli-slit methods for a range of electron beam intensities from 1 nC to 4 nC at A0 Photoinjector facility at Fermilab. The data have been taken with un-stacked 2.5 ps laser pulse. In this paper we report on these measurements and compare the results with the predictions from beam dynamics calculations using ASTRA and General Particle Tracer including 3D space charge effects.