A   B   C   D   E   F   G   H   I   J   K   L   M   N   O   P   Q   R   S   T   U   V   W   X   Y   Z  

Bassi, G.

Paper Title Page
TUZBC03 Self-Consistent Computation of Electromagnetic Fields and Phase Space Densities for Particles on Curved Planar Orbits 899
 
  • J. A. Ellison, G. Bassi, K. A. Heinemann
    UNM, Albuquerque, New Mexico
  • M. Venturini
    LBNL, Berkeley, California
  • R. L. Warnock
    SLAC, Menlo Park, California
 
  Funding: Supported by DOE grant DE-FG02-99ER41104 and contracts DE-AC02-05CH11231 and DE-AC02-76SF00515.

We discuss our progress on integration of the coupled Vlasov-Maxwell equations in 4D. We emphasize Coherent Synchrotron Radiation from particle bunches moving on arbitrary curved planar orbits, with shielding from the vacuum chamber, but also include space charge forces. Our approach provides simulations with lower numerical noise than the macroparticle method, and will allow the study of emittance degradation and microbunching in bunch compressors. The 4D phase space density (PSD) is calculated in the beam frame with the method of local characteristics (PF). The excited fields are computed in the lab frame from a new double integral formula. Central issues are a fast evaluation of the fields and a deep understanding of the support of the 4D PSD. As intermediate steps, we have (1) developed a parallel self-consistent code using particles, where an important issue is the support of the charge density*; (2) studied carefully a 2D phase space Vlasov analogue; and (3) derived an improved expression of the field of a 1D charge/current distribution which accounts for the interference of different bends and other effects usually neglected**. Results for bunch compressors are presented.

* Self Consistent Particle Method to Study CSR Effects in Bunch Compressors, Bassi, et.al., this conference.** CSR from a 1-D Bunch on an Arbitrary Planar Orbit, Warnock, this conference.

 
slides icon Slides  
THPAN084 Self Consistent Monte Carlo Method to Study CSR Effects in Bunch Compressors 3414
 
  • G. Bassi, J. A. Ellison, K. A. Heinemann
    UNM, Albuquerque, New Mexico
  • R. L. Warnock
    SLAC, Menlo Park, California
 
  Funding: Supported by DOE grant DE-FG02-99ER41104 and contract DE-AC02-76SF00515.

We report on the implementation of a self consistent particle code to study CSR effects on particle bunches traveling on arbitrary planar orbits. Shielding effects are modeled with parallel perfectly conducting plates. The "vertical" charge distribution is assumed to be stationary. The macroscopic Maxwell equations are solved in the lab frame while the equations of motion are integrated in the beam frame interaction picture where the dynamics is governed by the self fields alone. We study different methods to construct a smooth charge density from particles, e.g. gridless nonparametric curve estimation and charge deposition plus filtering. We present numerical results for bunch compressors. In particular, we study different initial distributions. The transverse initial distribution is Gaussian and we study different initial longitudinal distributions: Gaussian, parabolic and nonlinear chirp. A parallel version of the code has been implemented and this will speed up parameter analysis and allow micro-bunching studies.

 
FRPMN099 Equilibrium Fluctuations in an N-Particle Coasting Beam: Schottky Noise Effects 4318
 
  • G. Bassi, J. A. Ellison, K. A. Heinemann
    UNM, Albuquerque, New Mexico
 
  Funding: Supported by DOE grant DE-FG02-99ER41104

We discuss the longitudinal dynamics of an unbunched beam with a collective effect due to the vacuum chamber and with the discretness of an N-particle beam (Schottky noise) included. We start with the 2N equations of motion (in angle and energy) with random initial conditions. The 2D phase space density for the N-Particles is a sum of delta functions and satisfies the Klimontovich equation. An arbitrary function of the energy also satisfies the Klimontovich equation and we linearize about a convenient equilibrium density taking the initial conditions to be independent, identically distributed random vaiables with the equilibrium distribution. The linearized equations can be solved using a Laplace transform in time and a Fourier series in angle. The resultant stochastic process for the phase space density is analyzed and compared with a known result*. Work is in progress to study the full nonlinear problem. To gain further insight we are studying three alternative approaches: (1) a BBGKY approach, (2) an approach due to Elskens and Escande** and (3) the 'three-level-approach' of Donsker and Varadhan (see "Entropy, Large Deviations and Statistical Mechanics'', by R. S. Ellis).

* V. V. Parkhomchuk and D. V. Pestrikov, Sov. Phys. Tech. Phys. 25(7), July 1980 ** "Microscopic Dynamics of Plasmas and Chaos", Y. Elskens and D. Escande, IoP, Series in Plasma Physics, 2003.