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Outline

1 Vlasov-Maxwell with Shielding: Planar Case

2 Maxwell in Lab Frame with fixed vertical density
Field Formula and its computation

3 Vlasov in Beam Frame
Beam Frame Phase Space Density and Relation
to Lab Charge/Current Densities

4 Two Numerical Approaches:
Method of Local Characteristics, in progress
Self-Consistent Monte Carlo, code developed

5 Self-Consistent Monte Carlo Results
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Statement of Problem - I
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Planar Vlasov-Maxwell System in Lab Frame

(4− ∂2
u)E = H(Y )S(R, u), E = (EZ ,EX ,BY )

∂uΨ + Ṙ · ∇RΨ + Ṗ · ∇PΨ = 0, u = ct, R = (Z ,X )

E(Y = ±h/2) = 0, P = mγV

Vertical Charge Density H(Y ) is fixed

Ṙ and Ṗ are given by the Lorentz Equation
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Planar Vlasov-Maxwell Continued

Continuity Equation ⇐ Vlasov Equation

Poynting Theorem and Energy Conservation, and CSR vs. ISR
Heinemann, et. al. FRPMN101 Friday

1D charge/current model
Warnock FRPMS083 Friday

Self Consistent Monte Carlo Results
Bassi, et. al. THPAN084 Thursday
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Solution of 3D wave equation with Shielding BC

Solve: (4− ∂2
u)E = H(Y )S(R, u), E(Y = ±h/2) = 0

1 Eigen Expansion in Y → 2D Klein-Gordon with no BC
Trick → 3D Wave Equation with no BC

2 3D wave equation solved with retarded Green’s function
3 Make temporal argument of source a variable of integration

Solution:

E(R,Y , u) =

−
1

4π

∫u

−u
dηG (η,Y )

∫u−|η|

0
dv

∫2π

0
dθS(R +

√
(u − v)2 − η2eθ, v)

where eθ = (cos θ, sin θ) and no singularity.

Only assumption: Planar Motion
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Approximate Field Formula

Approximations (to decrease computational time):

Average fields over H(Y ) and assume Y extent of beam small
compared to h

Without shielding the formula is:

E(R, u) ≈ − 1
4π

∫u
0 dv

∫θmax

θmin
dθS(R + (u − v)eθ, v)

1 Need to find reasonable θ limits

2 θ integration: superconvergent trapizoidal rule

3 v integration: adaptive Gauss-Kronrod
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Evaluation of Integral

u

OP

v

u-v
∆θ

E(R, u) ≈ − 1
4π

∫u
0 dv

∫2π
0 dθS(R + (u − v)eθ, v)

circle is domain of dependence of OP at R due to source at
time v
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Beam Frame Coordinates

R =

Rr (s) + xn(s)
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Beam Frame EOM

Lab to Beam (Z ,X ,PZ ,PX ; u) ↔ (z , x , pz , px , ; s)

z = s − βru, pz = γ−γr

γr

EOM

z ′ = −κ(s)x p ′
z = F z

x ′ = px p ′
x = κ(s)pz + F x

where the self forces are

F z ≈
q

Prc
(E‖(z , x , s) · t(s) + pxE‖(z , x , s) · n(s))

F x ≈
q

Prc
(E‖(z , x , s) · n(s) − cBY (z , x , s)),

EOM with F = 0 have been linearized
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Relation Between Lab and Beam Frame Densities

Subtle relation between phase space densities

(Z ,X ,PZ ,PX ; u) ↔ (z , x , pz , px , ; s)

FLab(Z ,X ,PZ ,PX ; u) =
β2

r
P2

r
fBeam(z , pz , x , px ; s)

Lab frame charge and current densities from fBeam

ρLab(R; u) ≈
∫

dpzdpx fBeam = ρBeam(z , x ; s),

JLab(R; u) ≈ Qβrc [ρBeam(z , x ; s)t(s) + τ(z , x ; s)n(s)]

where τ =
∫

dpzdpxpx fBeam and s = z + βru → βru.
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Method of Local Characteristics-I
2D Lab Frame Fields and 4D Beam Frame Vlasov are

E(R, u) ≈ −
1

4π

∫u

0
dv

∫2π

0
dθS(R + (u − v)eθ, v)

∂s f + z ′∂z f + x ′∂x f + p ′
z∂pz f + p ′

x∂px f = 0,

Basic Idea

1 f , E and history of charge/current density are known at s
2 Freeze fields at s, then Vlasov equation becomes a Liouville

equation on [s, s + ∆]
3 Find f at s + ∆ by integrating backward along characteristics
4 Calculate the fields at s + ∆ from f at s + ∆ and history
5 iterate

Remarks

Interpolation needed at step 3
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Method of Local Characteristics-II

Remarks

It’s hard to imagine a better approach, since this approach
preserves the geometry of the solutions.

Method developed by Warnock and extended by Venturini in
2D

Extended by Sobol to 4D in collective beam-beam interaction

Less “noise” than Monte Carlo

Our 4D work here is in progress
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Self Consistent Monte Carlo Method-I

Outline and comparison with PIC for Vlasov-Poisson
1 Monte Carlo generation of initial conditions from

fBeam(z , x , pz , px ; 0) (Similar in VP PIC)
2 Create a smooth Lab Frame charge density from scattered

beam frame phase space points. We use a Fourier method
used in statistical estimation. (Charge deposition in VP PIC)

3 Calculate fields from history of Fourier coefficients using our
field formula (Solve Poisson Equation in VP PIC)

4 Use 3) to move the phase space points (Same in VP PIC)
5 Go to 2) (Same in VP PIC)

Unperturbed Source Model
Fields calculated up front from source evolved with no self
forces, F.
Very fast in Gaussian case, but not self-consistent.
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Self Consistent Monte Carlo Method-II

A parallel code has been developed and results for the
Zeuthen benchmark bunch compressor will be presented in
Bassi, et. al. THPAN084 Thursday

Can follow 2D densities; 4D probably beyond current
computing capability

A few results follow (Thanks to the UNM High Performance
Computing Center and NERSC)
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