A   B   C   D   E   F   G   H   I   J   K   L   M   N   O   P   Q   R   S   T   U   V   W   X   Y   Z  

Antipov, S. P.

Paper Title Page
THPMN085 Proposed Dark Current Studies at the Argonne Wakefield Accelerator Facility 2904
 
  • S. P. Antipov, M. E. Conde, W. Gai, J. G. Power, Z. M. Yusof
    ANL, Argonne, Illinois
  • V. A. Dolgashev
    SLAC, Menlo Park, California
  • L. K. Spentzouris
    Illinois Institute of Technology, Chicago, Illinois
 
  Funding: US Department of Energy

A study of breakdown mechanism has been initiated at the Argonne Wakefield Accelerator Facility (AWA). Breakdown may include several factors such as local field enhancement, explosive electron emission, Ohmic heating, tensile stress produced by electric field, and others. The AWA is building a dedicated facility to test various models for breakdown mechanisms and to determine the roles of different factors in the breakdown. An imaging system is being put together to identify single emitters on the cathode surface. This will allow us to study dark current properties in the gun. We also plan to trigger breakdown events with a high-powered laser at various wavelengths (IR to UV). Another experimental idea follows from the recent work on a Schottky-enabled photoemission in an RF photoinjector that allows us to determine in situ the field enhancement factor on a cathode surface. Monitoring the field enhancement factor before and after can shed some light on a modification of metal surface after the breakdown.

 
THPMN086 Metamaterial-loaded Waveguides for Accelerator Applications 2906
 
  • S. P. Antipov, M. E. Conde, W. Gai, R. Konecny, W. Liu, J. G. Power, Z. M. Yusof
    ANL, Argonne, Illinois
  • L. K. Spentzouris
    Illinois Institute of Technology, Chicago, Illinois
 
  Funding: US Department of Energy National Science Foundation grant # 0237162

Metamaterials (MTM) are artificial periodic structures made of small elements and designed to obtain specific electromagnetic properties. As long as the periodicity and the size of the elements are much smaller than the wavelength of interest, an artificial structure can be described by a permittivity and permeability, just like natural materials. Metamaterials can be customized to have the permittivity and permeability desired for a particular application. Waveguides loaded with metamaterials are of interest because the metamaterials can change the dispersion relation of the waveguide significantly. Slow backward waves, for example, can be produced in a LHM-loaded waveguide without corrugations. In this paper we present theoretical studies and computer modeling of waveguides loaded with 2D anisotropic metamaterials, including the dispersion relation for a MTM-loaded waveguide. The dispersion relation of a MTM-loaded waveguide has several interesting frequency bands which are described. It is shown theoretically that dipole mode suppression may be possible. Therefore, metamaterials can be used to suppress wakefields in accelerating structures.

 
THPMN087 Simulations of the Rotating Positron Target in the Presence of OMD Field 2909
 
  • S. P. Antipov, W. Gai, W. Liu
    ANL, Argonne, Illinois
  • L. K. Spentzouris
    Illinois Institute of Technology, Chicago, Illinois
 
  Funding: US Department of Energy

For an ILC undulator-based positron source target configuration, a strong optical matching device (OMD) field is needed inside the target to increase the positron yield (by more than 40%)[1]. It is also required that the positron target is constantly rotated to reduce thermal and radiation damage. We report on a simulation of the rotating metal target wheel under a strong magnetic field. By rearranging Maxwell?s equations for a rotating frame and using FEMLAB, we have solved the detailed magnetic field distribution and eddy current of a rotating metal disk in magnetic field, and so the required power to drive the target wheel. In order to validate the simulation process, we have compared our results with previous experimental data [2] and found they are in very good agreement, but differ from previous approximate models [3]. Here we give detailed results on the proposed ILC target system, such as induced magnetic field (dipole and higher orders), eddy current distribution and the driving force requirements. The effect of these higher order fields on the positron beam dynamics is also considered.

 
THPMS078 Status of the Microwave PASER Experiment 3166
 
  • P. Schoessow, A. Kanareykin
    Euclid TechLabs, LLC, Solon, Ohio
  • S. P. Antipov, M. E. Conde, W. Gai, J. G. Power
    ANL, Argonne, Illinois
  • E. Bagryanskaya
    International Tomography Center, SB RAS, Novosibirsk
  • V. Gorelik, A. Kovshik, A. V. Tyukhtin, N. Yevlampieva
    Saint-Petersburg State University, Saint-Petersburg
  • L. Schachter
    Technion, Haifa
 
  Funding: Work supported by US Department of Energy

The PASER is a new method for particle acceleration, in which energy from an active medium is transferred to a charged particle beam. The effect is similar to the action of a maser or laser with the stimulated emission of radiation being produced by the virtual photons in the electromagnetic field of the beam. We are developing a demonstration PASER device operating at X-band, based on the availability of a new class of active materials that exhibit photoinduced electron spin polarization. We will report on the status of active material development and measurements, numerical simulations, and preparations for microwave PASER experiments at the Argonne Wakefield Accelerator facility.

 
FRPMN064 Applications of Cherenkov Radiation in Dispersive and Anisotropic Metamaterials to Beam Diagnostics 4156
 
  • A. V. Tyukhtin
    Saint-Petersburg State University, Saint-Petersburg
  • S. P. Antipov
    ANL, Argonne, Illinois
  • A. Kanareykin, P. Schoessow
    Euclid TechLabs, LLC, Solon, Ohio
 
  Funding: US Department of Energy

Cherenkov radiation (CR) is extensively used for detection of charged particles. The prompt nature of the radiation is one major advantage for diagnostics that measure temporal properties of the beam. However, low signal levels and small angles of radiation with respect to the particle trajectory present limitations on the use of traditional detector media. Using modern artificial metamaterials as Cherenkov radiators can provide essential advantages. As a rule metamaterials are characterized by strong dispersion and anisotropy that can be engineered to the requirements of the detector. We present theoretical and numerical analyses of CR in bulk anisotropic and dispersive media and in waveguides. The properties exhibited by these materials (large angles of radiation, two maxima in the angular distributions, etc.) allow the design of detectors with unusual characteristics, like a detector that registers almost all moving particles, and simultaneously only particles with velocity exceeding a predetermined threshold. We consider the case of a material that is approximately equivalent to an isotropic left-handed medium that also presents advantages as a Cherenkov medium.