TOPC  —  Instrumentation   (17-May-05   13:50—15:25)

Chair: R.C. Webber, Fermilab, Batavia, Illinois

Paper Title Page
TOPC001 Visualizing Electron Beam Dynamics and Instabilities with Synchrotron Radiation at the APS 74
 
  • B.X. Yang, A.H. Lumpkin
    ANL, Argonne, Illinois
 
  Funding: Work supported by U.S. Department of Energy, Office of Basic Energy Sciences under Contract No. W-31-109-ENG-38.

The Advanced Photon Source (APS) is a third generation hard x-ray source serving a large user community. In order to characterize the high-brilliance beams, the APS diagnostics beamlines have been developed into a full photon diagnostics suite. We will describe the design and capabilities of the APS visible light imaging line, the bend magnet x-ray pinhole camera, and a unique diagnostics undulator beamline. Their primary functions are to support the APS user operations by providing information on beam sizes (20 - 100 micrometers), divergence (3 – 25 microradians), and bunch length (20 – 50 ps). Through the use of examples, we will show how these complementary imaging tools are used to visualize the electron dynamics and investigate beam instabilities. Special emphasis will be put on the use of undulator radiation, which is uniquely suitable for time-resolved imaging of electron beam with high spatial resolution, and for measurements of longitudinal beam properties such as beam energy spread and momentum compaction.

 
TOPC002 Residual-Gas-Ionization Beam Profile Monitors in RHIC 230
 
  • R. Connolly, R.J. Michnoff, S. Tepikian
    BNL, Upton, Long Island, New York
 
  Funding: Work performed under Contract #DE-AC02-98CH10886 under the auspices of the U.S. Department of Energy.

Four ionization profile monitors (IPMs) are in RHIC to measure vertical and horizontal beam profiles in the two rings. These work by measuring the distribution of electrons produced by beam ionization of residual gas. During the last two years both the collection accuracy and signal/noise ratio have been improved. An electron source is mounted across the beam pipe from the collector to monitor microchannel plate (MCP) aging and the signal electrons are gated to reduce MCP aging and to allow charge replenishment between single-turn measurements. Software changes permit simultaneous measurements of any number of individual bunches in the ring. This has been used to measure emittance growth rates on six bunches of varying intensities in a single store. Also the software supports FFT analysis of turn-by-turn profiles of a single bunch at injection to detect dipole and quadrupole oscillations.

 
TOPC003 Beam Measurements and Upgrade at BL 7.2, the Second Diagnostics Beamline of the Advanced Light Source 281
 
  • T. Scarvie, A. Biocca, N. Kelez, M.C. Martin, T. Nishimura, G.J. Portmann, F. Sannibale, E. Williams
    LBNL, Berkeley, California
 
  Funding: Work supported by the U.S. Department of Energy under Contract No. DE-AC03-76SF00098.

Beamline BL 7.2 of the Advanced Light Source (ALS) at the Lawrence Berkeley National Laboratory is a beam diagnostics system that uses the synchrotron radiation (SR) emitted by a dipole magnet. It consists of two branches, in the first one the x-ray portion of the SR is used in a pinhole camera system for measuring the transverse profile of the beam. The second branch is equipped with a x-ray BPM system and with a multipurpose port where the visible and the infrared part of the SR can be used for various applications such as bunch length measurements and IR coherent synchrotron radiation experiments. The pinhole system has been commissioned at the end of 2003 and since then is in successful operation. The installation of the second branch has been completed recently and the results of its commissioning are presented in this paper together with examples of beam measurements performed at BL 7.2.

 
TOPC004 Tevatron Beam Position Monitor Upgrade 410
 
  • S.A. Wolbers, B. Banerjee, B. Barker, S. Bledsoe, T. Boes, M. Bowden, G.I. Cancelo, G. Duerling, B. Forster, B. Haynes, B. Hendricks, T. Kasza, R.K. Kutschke, R. Mahlum, M.A. Martens, M. Mengel, M. Olsen, V. Pavlicek, T. Pham, L. Piccoli, J. Steimel, K. Treptow, M. Votava, R.C. Webber, B. West, D. Zhang
    Fermilab, Batavia, Illinois
 
  Funding: Operated by Universities Research Association Inc. under Contract No. DE-AC02-76CH03000 with the United States Department of Energy.

The Tevatron Beam Position Monitor (BPM) readout electronics and software have been upgraded to improve measurement precision, functionality and reliability. The original system, designed and built in the early 1980s, became inadequate for current and future operations of the Tevatron. The upgraded system consists of 960 channels of new electronics to process analog signals from 240 BPMs, new front-end software, new online and controls software, and modified applications to take advantage of the improved measurements and support the new functionality. The new system reads signals from both ends of the existing directional stripline pickups to provide simultaneous proton and antiproton position measurements. Measurements using the new system are presented that demonstrate its improved resolution and overall performance.

 
TOPC005 Transverse Emittance Blow-Up Due to the Operation of Wire Scanners, Analytical Predictions and Measurements 437
 
  • F. Roncarolo, B. Dehning
    CERN, Geneva
 
  Wire Scanner monitors are used in the CERN accelerators to measure the transverse beam size. In the SPS and the LHC they will serve as calibration devices for other emittance monitors. The PSB, PS and SPS are equipped with scanners which move through the beam a 30 um wire, with a speed that can vary between 0.4 to 20 m/s. During each scan, the beam suffers an emittance blow up, due to multiple Coulomb scattering of the beam protons on the lattice nuclei of the wire material. The effect depends on the particles' energy, the betatron function at the monitor location and on the wire characteristics (material, diameter and speed). In this paper we will present a comparison of the analytically predicted emittance increase caused by the instruments and a number of experimental measurements. For the small LHC beams the relative emittance blow-up can exceed a few 10e-2.