Magnets

Miscellaneous

Paper Title Page
MPPT063 Optimized Analyzing Magnet for Measurements of Polarization of Gamma-Quants at 10 MeV 3582
 
  • A.A. Mikhailichenko
    Cornell University, Department of Physics, Ithaca, New York
 
  We described here calculations and test of magnet for measurement of polarization of gammas by its helicity-dependent attenuation in magnetized iron. Magnet is a compact device which size is ~ten times smaller, than world wide analogues.  
MPPT064 Elements of Magneto-Optics Acting in One Direction 3618
 
  • A.A. Mikhailichenko
    Cornell University, Department of Physics, Ithaca, New York
 
  We describe here the way to use quadrupole, octupole lenses so they are acting in one direction only. The beam is running across the lens in contrast with usual axis running.  
MPPT068 A Compact High Gradient Pulsed Magnetic Quadrupole 3771
 
  • D. Shuman, A. Faltens, G. Ritchie, P.A. Seidl
    LBNL, Berkeley, California
  • M. Kireeff Covo
    LLNL, Livermore, California
 
  Funding: This work was supported by the Director, Office of Science, Office of Fusion Energy Sciences, of the U.S. Department of Energy under Contract No. DE-AC03-76SF00098.

A design for a high gradient, low inductance pulsed quadrupole magnet is presented. The magnet is a circular current dominated design with a circular iron return yoke. Features include a five turn eddy current compensated solid conductor coil design which theoretically eliminates the first four higher order multipole field components, a single layer "non-spiral bedstead" coil design which both minimizes utilization of radial space and maximizes utilization of axial space, and allows incorporation of steering and correction coils within existing radial space. The coils are wound and stretched straight in a special winder, then bent in simple fixtures to form the upturned ends, simplifying fabrication and assembly.

 
MPPT069 A Pulsed Solenoid for Intense Ion Beam Transport 3798
 
  • D. Shuman, E. Henestroza, G. Ritchie, D.L. Vanecek, W. Waldron, S. Yu
    LBNL, Berkeley, California
 
  Funding: This work was supported by the Director, Office of Science, Office of Fusion Energy Sciences, of the U.S. Department of Energy under Contract No. DE-AC03-76SF00098.

A design for a pulsed solenoid magnet is presented. Some simple design formulas are given that are useful for initial design scoping. Design features to simplify fabrication and improve reliability are presented. Fabrication, assembly, and test results are presented.