Magnets

Conventional Magnets/SNS

Paper Title Page
MPPT070 Construction and Power Test of the Extraction Kicker Magnet for the Spallation Neutron Source Accumulator Ring 3831
 
  • C. Pai, H. Hahn, H.-C. Hseuh, Y.Y. Lee, W. Meng, J.-L. Mi, D. Raparia, J. Sandberg, R.J. Todd, N. Tsoupas, J.E. Tuozzolo, D.S. Warburton, J. Wei, D. Weiss, W. Zhang
    BNL, Upton, Long Island, New York
 
  Funding: SNS is managed by UT-Battelle, LLC, under contract DE-AC05-00OR22725 for the U.S. Department of Energy. SNS is a partnership of six national laboratories: Argonne, Brookhaven, Jefferson, Lawrence Berkeley, Los Alamos, and Oak Ridge.

Two extraction kicker magnet assemblies that contain seven individual pulsed magnet modules each will kick the proton beam vertically out of the SNS accumulator ring into the aperture of the extraction lambertson septum magnet. The proton beam then travels to the 1.4 MW SNS target assembly. The 14 kicker magnets and major components of the kicker assembly have been fabricated in BNL. The inner surfaces of the kicker magnets were coated with TiN to reduce the secondary electron yield. All 14 PFN power supplies have been built, tested and delivered to ORNL. Before final installation, a partial assembly of the kicker system with three kicker magnets was assembled to test the functions of each critical component in the system. In this paper we report the progress of the construction of the kicker components, the TiN coating of the magnets, the installation procedure of the magnets and the full power test of the kicker with the PFN power supply.

 
MPPT071 The Lambertson Septum Magnet of the Spallation Neutron Source 3847
 
  • J. Rank, Y.Y. Lee, W.J. McGahern, G. Miglionico, D. Raparia, N. Tsoupas, J.E. Tuozzolo, J. Wei
    BNL, Upton, Long Island, New York
 
  Funding: Work performed under contract for SNS, managed by UT-Battelle, LLC, under contract DE-AC05-00OR22725 with the U.S. Department of Energy. SNS is a partnership of six national laboratories: Argonne, Brookhaven, Jefferson, Lawrence Berkeley, Los Alamos, and Oak Ridge.

In the Spallation Neutron Source, at Oak Ridge National Laboratory in Tennessee, multiple-stage injections to an accumulator ring increase intensity until a final extraction delivers the full proton beam to the target via transfer line. This extraction is achieved by a series of kicker elements and a thin septum Extraction Lambertson Septum Magnet. Here we discuss the lattice geometry, beam dynamics and optics, and the vacuum, electromagnetic and electromechanical design aspects of the SNS Extraction Lambertson Septum Magnet. Relevant datums are established. Beam optics is studied. Vector calculus is solved for pitch and roll angles. Fundamental magnet sections are depicted schematically. Coil, pole and yoke design calculations and electromagnetics optimization are presented.

 
MPPT072 3D Simulation Studies of SNS Ring Doublet Magnets 3865
 
  • J.-G. Wang
    ORNL, Oak Ridge, Tennessee
  • N. Tsoupas
    BNL, Upton, Long Island, New York
  • M. Venturini
    LBNL, Berkeley, California
 
  Funding: SNS is managed by UT-Battelle, LLC, under contract DE-AC05-00OR22725 for the U.S. Department of Energy. SNS is a partnership of six national laboratories: Argonne, Brookhaven, Jefferson, Lawrence Berkeley, Los Alamos, and Oak Ridge.

The accumulator ring of the Spallation Neutron Source (SNS) at ORNL employs in its straight sections closely packed quadrupole doublet magnets with large aperture of R=15.1 cm and relatively short iron-to-iron distance of 51.4 cm.* The magnetic interference among the magnets in the doublet assemblies is not avoidable due to the fringe fields. Though each magnet in the assemblies has been individually mapped to high accuracy of delta(B)/B~1x10-4, the experimental data including the magnet interference effect in the assemblies will not be available. We have performed 3D computer simulations on a quadrupole doublet model in order to assess the degree of the interference and to obtain relevant data which should be very useful for the SNS commissioning and operation. This paper reports our simulation results.

*N. Tsoupas et al. "A Large-aperture Narrow Quadrupole for the SNS Accumulator Ring," Proc. EPAC 2002, p.1106, Paris, June 3-7, 2002.

 
MPPT073 Field Distribution of Injection Chicane Dipoles in SNS Ring 3907
 
  • J.-G. Wang
    ORNL, Oak Ridge, Tennessee
 
  Funding: SNS is managed by UT-Battelle, LLC, under contract DE-AC05-00OR22725 for the U.S. Department of Energy. SNS is a partnership of six national laboratories: Argonne, Brookhaven, Jefferson, Lawrence Berkeley, Los Alamos, and Oak Ridge.

3D computing simulations have been performed to study the magnetic field distribution of the injection chicane dipoles in the SNS ring.* The simulation studies have yielded the performance characteristics of the magnets and generated the magnetic field data in three dimensional grids, which can be used for detailed investigation of beam dynamics. Based on the simulation data, a 3D multipole expansion of the chicane dipole field, consisting of generalized gradients and their derivatives, has been made. The harmonic and pseudo-harmonic components in the expansion give much insight into the magnet physics. The expansion is quasi-analytical by fitting numeric data into a few interpolation functions. A 5th-order representation of the field is generated, and the effects of even higher order terms on the field representation are discussed.

*The injection chicane dipoles were designed at BNL by Y.Y. Lee, W. Meng, et al. See "Injection into the SNS Accumulator Ring: Minimizing Uncontrolled Losses and Dumping Stripped Electrons," D.T. Abell, Y.Y. Lee, W. Meng, EPAC 2000.