A   B   C   D   E   F   G   H   I   J   K   L   M   N   O   P   Q   R   S   T   U   V   W   X   Y   Z    

Yusof, Z.M.

Paper Title Page
TPAE016 The Argonne Wakefield Accelerator Facility: Status and Recent Activities 1485
 
  • M.E. Conde, S.P. Antipov, W. Gai, C.-J. Jing, R. Konecny, W. Liu, J.G. Power, H. Wang, Z.M. Yusof
    ANL, Argonne, Illinois
 
  Funding: This work is supported by the U.S. Department of Energy, under contract No. W-31-109-ENG-38.

The Argonne Wakefield Accelerator Facility (AWA) is dedicated to the study of electron beam physics and the development of accelerating structures based on electron beam driven wakefields. In order to carry out these studies, the facility employs a photocathode RF gun capable of generating electron beams with high bunch charges (up to 100 nC) and short bunch lengths. This high intensity beam is used to excite wakefields in the structures under investigation. The wakefield structures presently under development are dielectric loaded cylindrical waveguides with operating frequencies of 7.8 or 15.6 GHz. The facility is also used to investigate the generation and propagation of high brightness electron beams. Presently under investigation, is the use of photons with energies lower than the work function of the cathode surface (Schottky-enabled photoemission), aimed at generating electron beams with low thermal emittance. Novel electron beam diagnostics are also developed and tested at the facility. The AWA electron beam is also used in laboratory-based astrophysics experiments; namely, measurements of microwave Cherenkov radiation and fluorescence of air. We report on the current status of the facility and present recent results.

 
WPAP036 Determination of the Field Enhancement Factor on Photocathode Surface Via the Schottky Effect 2425
 
  • Z.M. Yusof, M.E. Conde, W. Gai
    ANL, Argonne, Illinois
 
  Funding: U.S. Department of Energy.

Using photons with energy that is less than the work function, we employ the Schottky effect to determine the field enhancement factor on the surface of a Mg photocathode. The Schottky effect is manifested via a shift in the threshold for photoemission as the amplitude of the RF in the photoinjector gun is varied. From the threshold condition, we can directly determine the field enhancement factor on the cathode surface. This is a viable technique to obtain the field enhancement factor of surfaces of other materials such as Nb and Cu.