A   B   C   D   E   F   G   H   I   J   K   L   M   N   O   P   Q   R   S   T   U   V   W   X   Y   Z    

Will, I.

Paper Title Page
WPAP006 Recent Developments at PITZ 1012
 
  • M. Krasilnikov, K. Abrahamyan, G. Asova, J.W. Baehr, G. Dimitrov, U. Gensch, H.-J. Grabosch, J.H. Han, S. Khodyachykh, S. Liu, V. Miltchev, A. Oppelt, B. Petrosyan, S. Riemann, L. Staykov, F. Stephan
    DESY Zeuthen, Zeuthen
  • W. Ackermann, W.F.O. Müller, S. Schnepp, T. Weiland
    TEMF, Darmstadt
  • J.-P. Carneiro, K. Floettmann, S. Schreiber
    DESY, Hamburg
  • M.V. Hartrott, E. Jaeschke, D. Kraemer, D. Lipka, R. Richter
    BESSY GmbH, Berlin
  • P. Michelato, L. Monaco, C. Pagani, D. Sertore
    INFN/LASA, Segrate (MI)
  • J.R. Roensch, J. Rossbach
    Uni HH, Hamburg
  • W. Sandner, I. Will
    MBI, Berlin
  • I. Tsakov
    INRNE, Sofia
 
  The ability to produce high brightness electron beams as required for modern Free Electron Lasers (FELs) has been demonstrated during the first stage of the Photo Injector Test Facility at DESY Zeuthen (PITZ1). The electron source optimization at PITZ1 was successfully completed, resulting in the installation of the PITZ rf gun at the VUV-FEL (DESY, Hamburg). One of the main goals of the second stage of PITZ (PITZ2) is to apply higher gradients in the rf gun cavity in order to obtain smaller beam emittance by faster acceleration of the space charge dominated beams. In order to reach the required gradients a 10 MW klystron has to be installed and the gun cavity has to be conditioned for higher peak power. Another important goal of PITZ2 is a detailed study of the emittance conservation principle by using proper electron beam acceleration with a booster. Further photo injector optimization, including update of the photocathode laser and diagnostic tools, is foreseen as well. Recent progress on the PITZ developments will be reported.  
WPAP007 Status of the 3½ Cell Superconducting RF Gun Project in Rossendorf 1081
 
  • R. Xiang, H. Buettig, P. Evtushenko, D. Janssen, U. Lehnert, P. Michel, K. Moeller, Ch. Schneider, R. Schurig, F. Staufenbiel, J. Teichert
    FZR, Dresden
  • T.  Kamps, D. Lipka
    BESSY GmbH, Berlin
  • W.-D. Lehmann
    IfE, Dresden
  • J. Stephan
    IKST, Drsden
  • V. Volkov
    BINP SB RAS, Novosibirsk
  • I. Will
    MBI, Berlin
 
  In the paper, we report on the status and progress of the superconducting rf gun project in Rossendorf. The gun is designed for cw operation mode with 1mA current and 10 MeV electron energy. The gun will be installed at the ELBE superconducting electron linear accelerator. It will have a 3½ cell niobium cavity operating at 1.3 GHz. The cavity consists of three cells with TESLA geometry and a specially designed half-cell in which the photocathode will be placed. Two Nb cavities, with RRR 300 and 40 respectively, will be finished at the beginning of 2005. After delivery, the rf tests will be performed and the treatment of the cavities will be started. At the same time, the design of the cryostat is finished and the fabrication of its components is under way. Further activities are the design of the diagnostic beam line, the assembling of the new photocathode preparation system, and the upgrade of the 262 nm driver laser system.