A   B   C   D   E   F   G   H   I   J   K   L   M   N   O   P   Q   R   S   T   U   V   W   X   Y   Z    

Todd, A.M.M.

Paper Title Page
MOPB011 Axial RF Power Input in Photocathode Electron Guns 743
 
  • D. Janssen
    FZR, Dresden
  • H. Bluem, A.M.M. Todd
    AES, Princeton, New Jersey
  • V. Volkov
    BINP SB RAS, Novosibirsk
 
  We discuss the coaxial power input in normal and superconducting RF (SRF)photoinjector cavities. Upstream coaxial power input has been previously used at the PITZ facility where the output beam tube is an intrinsic part of the coaxial transmission line into the gun. In this paper, we describe coaxial coupling from the cathode side of the gun. For normal conducting RF guns, in addition to the advantage from symmetric coupling, an emittance compensation solenoid can now be positioned close to the gun cavity to deliver optimal transverse emittance. Beam dynamics calculations demonstrate 0.8 mm-mrad at 1 nC in X-band. For an SRF gun, we present a design for coaxial input around the cathode using a superconducting coupling cell. This cell matches the external quality factor of the gun for different beam powers and there is no RF loss associated with the axial gap of the cathode. The heat input into the coaxial feed and the surface field of the coupler are discussed. For a 1.3 GHz half-cell gun cavity with stored energy of 6.6 J, a 2.5 MeV electron beam can be delivered with a peak accelerating field of 50 MV/m. At 10 mA,the external Q is 2.1 x 106 and the coaxial line power loss that must be cooled is 28 W.  
WPAP033 State-of-the-Art Electron Guns and Injector Designs for Energy Recovery Linacs (ERL) 2292
 
  • A.M.M. Todd, A. Ambrosio, H. Bluem, V. Christina, M.D. Cole, M. Falletta, D. Holmes, E. Peterson, J. Rathke, T. Schultheiss, R. Wong
    AES, Medford, NY
  • I. Ben-Zvi, A. Burrill, R. Calaga, P. Cameron, X.Y. Chang, H. Hahn, D. Kayran, J. Kewisch, V. Litvinenko, G.T. McIntyre, T. Nicoletti, J. Rank, T. Rao, J. Scaduto, K.-C. Wu, A. Zaltsman, Y. Zhao
    BNL, Upton, Long Island, New York
  • S.V. Benson, E. Daly, D. Douglas, H.F.D. Dylla, L. W. Funk, C. Hernandez-Garcia, J. Hogan, P. Kneisel, J. Mammosser, G. Neil, H.L. Phillips, J.P. Preble, R.A. Rimmer, C.H. Rode, T. Siggins, T. Whitlach, M. Wiseman
    Jefferson Lab, Newport News, Virginia
  • I.E. Campisi
    ORNL, Oak Ridge, Tennessee
  • P. Colestock, J.P. Kelley, S.S. Kurennoy, D.C. Nguyen, W. Reass, D. Rees, S.J. Russell, D.L. Schrage, R.L. Wood
    LANL, Los Alamos, New Mexico
  • D. Janssen
    FZR, Dresden
  • J.W. Lewellen
    ANL, Argonne, Illinois
  • J.S. Sekutowicz
    DESY, Hamburg
  • L.M. Young
    TechSource, Santa Fe, New Mexico
 
  Funding: This work is supported by NAVSEA, NSWC Crane, the Office of Naval Research, the DOD Joint Technology Office and by the U.S. DOE.

A key technology issue of ERL devices for high-power free-electron laser (FEL) and 4th generation light sources is the demonstration of reliable, high-brightness, high-power injector operation. Ongoing programs that target up to 1 Ampere injector performance at emittance values consistent with the requirements of these applications are described. We consider that there are three possible approaches that could deliver the required performance. The first is a DC photocathode gun and superconducting RF (SRF) booster cryomodule. Such a 750 MHz device is being integrated and will be tested up to 100 mA at the Thomas Jefferson National Accelerator Facility beginning in 2007. The second approach is a high-current normal-conducting RF photoinjector. A 700 MHz gun will undergo thermal test in 2006 at the Los Alamos National Laboratory, which, if successful, when equipped with a suitable cathode, would be capable of 1 Ampere operation. The last option is an SRF gun. A half-cell 703 MHz SRF gun capable of delivering 1.0 Ampere will be tested to 0.5 Ampere at the Brookhaven National Laboratory in 2006. The fabrication status, schedule and projected performance for each of these state-of-the-art injector programs will be presented.

 
TPAP043 Electron Cooling of RHIC 2741
 
  • I. Ben-Zvi, D.S. Barton, D.B. Beavis, M. Blaskiewicz, J.M. Brennan, A. Burrill, R. Calaga, P. Cameron, X.Y. Chang, R. Connolly, Yu.I. Eidelman, A.V. Fedotov, W. Fischer, D.M. Gassner, H. Hahn, M. Harrison, A. Hershcovitch, H.-C. Hseuh, A.K. Jain, P.D.J. Johnson, D. Kayran, J. Kewisch, R.F. Lambiase, V. Litvinenko, W.W. MacKay, G.J. Mahler, N. Malitsky, G.T. McIntyre, W. Meng, K.A.M. Mirabella, C. Montag, T.C.N. Nehring, T. Nicoletti, B. Oerter, G. Parzen, D. Pate, J. Rank, T. Rao, T. Roser, T. Russo, J. Scaduto, K. Smith, D. Trbojevic, G. Wang, J. Wei, N.W.W. Williams, K.-C. Wu, V. Yakimenko, A. Zaltsman, Y. Zhao
    BNL, Upton, Long Island, New York
  • D.T. Abell, D.L. Bruhwiler
    Tech-X, Boulder, Colorado
  • H. Bluem, A. Burger, M.D. Cole, A.J. Favale, D. Holmes, J. Rathke, T. Schultheiss, A.M.M. Todd
    AES, Princeton, New Jersey
  • A.V. Burov, S. Nagaitsev
    Fermilab, Batavia, Illinois
  • J.R. Delayen, Y.S. Derbenev, L. W. Funk, P. Kneisel, L. Merminga, H.L. Phillips, J.P. Preble
    Jefferson Lab, Newport News, Virginia
  • I. Koop, V.V. Parkhomchuk, Y.M. Shatunov, A.N. Skrinsky
    BINP SB RAS, Novosibirsk
  • I.N. Meshkov, A.O. Sidorin, A.V. Smirnov, G.V. Troubnikov
    JINR, Dubna, Moscow Region
  • J.S. Sekutowicz
    DESY, Hamburg
 
  We report progress on the R&D program for electron-cooling of the Relativistic Heavy Ion Collider (RHIC). This electron cooler is designed to cool 100 GeV/nucleon at storage energy using 54 MeV electrons. The electron source will be a superconducting RF photocathode gun. The accelerator will be a superconducting energy recovery linac. The frequency of the accelerator is set at 703.75 MHz. The maximum electron bunch frequency is 9.38 MHz, with bunch charge of 20 nC. The R&D program has the following components: The photoinjector and its photocathode, the superconducting linac cavity, start-to-end beam dynamics with magnetized electrons, electron cooling calculations including benchmarking experiments and development of a large superconducting solenoid. The photoinjector and linac cavity are being incorporated into an energy recovery linac aimed at demonstrating ampere class current at about 20 MeV. A Zeroth Order Design Report is in an advanced draft state, and can be found on the web at http://www.agsrhichome.bnl.gov/eCool/.

Under contract with the U.S. Department of Energy, Contract Number DE-AC02-98CH10886.

 
RPPE009 Extremely High Current, High-Brightness Energy Recovery Linac 1150
 
  • I. Ben-Zvi, D.S. Barton, D.B. Beavis, M. Blaskiewicz, J.M. Brennan, A. Burrill, R. Calaga, P. Cameron, X.Y. Chang, R. Connolly, D.M. Gassner, J.G. Grimes, H. Hahn, A. Hershcovitch, H.-C. Hseuh, P.D.J. Johnson, D. Kayran, J. Kewisch, R.F. Lambiase, V. Litvinenko, G.T. McIntyre, W. Meng, T.C.N. Nehring, T. Nicoletti, B. Oerter, D. Pate, J. Rank, T. Rao, T. Roser, T. Russo, J. Scaduto, Z. Segalov, K. Smith, N.W.W. Williams, K.-C. Wu, V. Yakimenko, K. Yip, A. Zaltsman, Y. Zhao
    BNL, Upton, Long Island, New York
  • H. Bluem, A. Burger, M.D. Cole, A.J. Favale, D. Holmes, J. Rathke, T. Schultheiss, A.M.M. Todd
    AES, Princeton, New Jersey
  • J.R. Delayen, L. W. Funk, P. Kneisel, H.L. Phillips, J.P. Preble
    Jefferson Lab, Newport News, Virginia
 
  Funding: Under contract with the U.S. Department of Energy, U.S. DOD Office of Naval Research and Joint Technology Office.

Next generation ERL light-sources, high-energy electron coolers, high-power Free-Electron Lasers, powerful Compton X-ray sources and many other accelerators were made possible by the emerging technology of high-power, high-brightness electron beams. In order to get the anticipated performance level of ampere-class currents, many technological barriers are yet to be broken. BNL’s Collider-Accelerator Department is pursuing some of these technologies for its electron cooling of RHIC application, as well as a possible future electron-hadron collider. We will describe work on CW, high-current and high-brightness electron beams. This will include a description of a superconducting, laser-photocathode RF gun and an accelerator cavity capable of producing low emittance (about 1 micron rms normalized) one nano-Coulomb bunches at currents of the order of one ampere average.

 
RPPE067 Design and Fabrication of an FEL Injector Cryomodule 3724
 
  • J. Rathke, A. Ambrosio, H. Bluem, M.D. Cole, E. Peterson, T. Schultheiss, A.M.M. Todd
    AES, Princeton, New Jersey
  • I.E. Campisi, E. Daly, J. Hogan, J. Mammosser, G. Neil, J.P. Preble, R.A. Rimmer, C.H. Rode, T.E. Whitlatch, M. Wiseman
    Jefferson Lab, Newport News, Virginia
  • J.S. Sekutowicz
    DESY, Hamburg
 
  Funding: This work is supported by NAVSEA, MDA, and SMDC.

Advanced Energy Systems has recently completed the design of a four cavity cryomodule for use as an FEL injector accelerator on the JLAB Injector Test Stand. Fabrication is nearing completion. Four 748.5 MHz single cell superconducting cavities have been completed and are currently at Jefferson Lab for final processing and test prior to integration in the module. This paper will review the design and fabrication of the cavities and cryomodule.

 
RPPT032 High Current Energy Recovery Linac at BNL 2242
 
  • V. Litvinenko, D.B. Beavis, I. Ben-Zvi, M. Blaskiewicz, J.M. Brennan, A. Burrill, R. Calaga, P. Cameron, X.Y. Chang, R. Connolly, D.M. Gassner, H. Hahn, A. Hershcovitch, H.-C. Hseuh, P.D.J. Johnson, D. Kayran, J. Kewisch, R.F. Lambiase, G.J. Mahler, G.T. McIntyre, W. Meng, T.C.N. Nehring, T. Nicoletti, B. Oerter, D. Pate, J. Rank, T. Rao, T. Roser, T. Russo, J. Scaduto, K. Smith, N.W.W. Williams, K.-C. Wu, V. Yakimenko, K. Yip, A. Zaltsman, Y. Zhao
    BNL, Upton, Long Island, New York
  • H. Bluem, A. Burger, M.D. Cole, A.J. Favale, D. Holmes, J. Rathke, T. Schultheiss, A.M.M. Todd
    AES, Princeton, New Jersey
  • J.R. Delayen, L. W. Funk, H.L. Phillips, J.P. Preble
    Jefferson Lab, Newport News, Virginia
 
  Funding: Work performed under Contract Number DE-AC02-98CH10886 with the auspices of the U.S. Department of Energy.

We present the design and the parameters of a small Energy Recovery Linac (ERL) facility, which is under construction at BNL. This R&D facility has goals to demonstrate CW operation of ERL with average beam current in the range of 0.1 - 1 ampere, combined with very high efficiency of energy recovery. The possibility for future up-grade to a two-pass ERL is being considered. The heart of the facility is a 5-cell 703.75 MHz super-conducting RF linac with HOM damping. Flexible lattice of ERL provides a test-bed for testing issues of transverse and longitudinal instabilities and diagnostics of intense CW e-beam. We present the status and plans for this facility.