A   B   C   D   E   F   G   H   I   J   K   L   M   N   O   P   Q   R   S   T   U   V   W   X   Y   Z    

Tarnetsky, V.V.

Paper Title Page
TPPT019 Numerical Study of Coupling Slot Effects on Beam Dynamics in Industrial Accelerator Prototype 1622
 
  • V.V. Tarnetsky, V. Auslender, I. Makarov, M.A. Tiunov
    BINP SB RAS, Novosibirsk
 
  Funding: The work is supported by ISTC grant #2550.

At Budker INP, the work is in progress on development of high-efficiency, high-power electron accelerator named ILU-12. The accelerator has a modular structure and consists of a chain of accelerating cavities connected by on-axis coupling cavities with coupling slots in the common walls (the coupling constant is about 0.08). Main parameters of the accelerator are: operating frequency of 176 MHz, electron energy of up to 5 MeV, average beam power of 300 kW. The paper presents results of 3D electromagnetic field numerical simulations for ILU-12 accelerating structure with recovery of quadrupole filed disturbance because of large coupling holes. The results show that accelerating cell geometry chosen eliminates coupling slot influence on the beam dynamics.

 
RPAP015 Modeling of Internal Injection and Beam Dynamics for High Power RF Accelerator 1419
 
  • M.A. Tiunov, V. Auslender, M.M. Karliner, G.I. Kuznetsov, I. Makarov, A.D. Panfilov, V.V. Tarnetsky
    BINP SB RAS, Novosibirsk
 
  Funding: The work is supported by ISTC grant #2550.

A new high power electron accelerator for industrial applications is developed in Novosibirsk. Main parameters of the accelerator are: operating frequency of 176 MHz, energy of electrons of 5 MeV, average beam power up to 300 kW. The accelerator consists of a chain of accelerating cavities, connected by the on-axis coupling cavities with coupling slots in the walls. A triode RF gun on the base of grid-cathode unit placed on the wall of the first accelerating cavity is used for internal injection of electrons. The paper presents the results of modeling and optimization of the accelerating structure, internal injection, and beam dynamics.

 
RPAP016 High Power Electron Accelerator Prototype 1502
 
  • V.O. Tkachenko, V. Auslender, V.G. Cheskidov, G.I. Korobeynikov, G.I. Kuznetsov, A.N. Lukin, I. Makarov, G. Ostreiko, A.D. Panfilov, A. Sidorov, V.V. Tarnetsky, M.A. Tiunov
    BINP SB RAS, Novosibirsk
 
  Funding: The work is supported by ISTC grant #2550.

In recent time the new powerful industrial electron accelerators appear on market. It caused the increased interest to radiation technologies using high energy X-rays due to their high penetration ability. However, because of low efficiency of X-ray conversion for electrons with energy below 5 MeV, the intensity of X-rays required for some industrial applications can be achieved only when the beam power exceeds 300 kW. The report describes a project of industrial electron accelerator ILU-12 for electron energy up to 5 MeV and beam power up to 300 kW specially designed for use in industrial applications. On the first stage of work we plan to use the existing generator designed for ILU-8 accelerator. It is realized on the GI-50A triode and provides the pulse power up to 1.5-2 MW and up to 20-30 kW of average power. In the report the basic concepts and a condition of the project for today are reflected.