A   B   C   D   E   F   G   H   I   J   K   L   M   N   O   P   Q   R   S   T   U   V   W   X   Y   Z    

Tallerico, P.J.

Paper Title Page
WPAT035 The LANSCE 805 MHZ RF System History and Status 2402
 
  • M.T. Lynch, G. Bolme, P.J. Tallerico
    LANL, Los Alamos, New Mexico
 
  The Los Alamos Neutron Science Center (LANSCE) linear accelerator runs at 201.25 MHz for acceleration to 100 MeV. The remainder of the acceleration to 800 MeV is at 805 MHz. This is done with 44 accelerator cavity stages driven by 805 MHz klystrons. Each klystron has a peak power capability of 1.25 MeV. Originally, 97 klystrons were purchased, which was 70 from Varian/CPI and 27 from Litton. The 44 RF systems are laid out in sectors with either 6 or 7 klystrons per sector. The klystrons in each sector are powered from a common HV sytem. The current arrangement uses the Varian/CPI klystrons in 6 of the 7 sectors and Litton klystrons in the remaining sector. With that arrangement there are 38 CPI klystrons installed and 1 spare klystron per sector and 6 Litton klystrons installed in the final sector with 2 spares. The current average life of all of the operating and spare klystrons (52 total) is >112,000 filament hours and >93,000 HV hours. That is three times the typical klystron lifetime today for other similar klystrons. This paper summarizes the details of the LANSCE klystron history and status and a summary of the predicted failure rate.  
WPAT036 A 700 MHZ, 1 MW CW RF System for a FEL 100mA RF Photoinjector 2413
 
  • W. Roybal, D.C. Nguyen, W. Reass, D. Rees, P.J. Tallerico, P.A. Torrez
    LANL, Los Alamos, New Mexico
 
  Funding: U.S. Department of Energy.

This paper describes a 700 MHz, 1 Megawatt CW, high efficiency klystron RF system utilized for a Free Electron Laser (FEL) high-brightness electron photoinjector (PI). The E2V klystron is mod-anode tube that operates with a beam voltage of 95 kV. This tube, operating with a 65% efficiency, requires ~96 watts of input power to produce in excess of 1 MW of output power. This output drives the 3rd cell of a 2-cell, p-mode PI cavity through a pair of planar waveguide windows. Coupling is via a ridge-loaded tapered waveguide section and "dog-bone" iris. This paper will present the design of the RF, RF transport, coupling, and monitoring/protection systems that are required to support CW operations of the 100 mA cesiated, semi-porous SiC photoinjector.

 
WPAT037 LANSCE RF System Refurbishment 2476
 
  • D. Rees, G. Bolme, S.I. Kwon, J.T.M. Lyles, M.T. Lynch, M. Prokop, W. Reass, P.J. Tallerico
    LANL, Los Alamos, New Mexico
 
  The Los Alamos Neutron Science Center (LANSCE) is in the planning phase of a refurbishment project that will sustain reliable facility operations well into the next decade. The LANSCE accelerator was constructed in the late 1960s and early 1970s and is a national user facility that provides pulsed protons and spallation neutrons for defense and civilian research and applications. We will be replacing all the 201 MHz RF systems and a substantial fraction of the 805 MHz RF systems and high voltage systems. The current 44 LANSCE 805 MHz, 1.25 MW klystrons have an average in-service time in excess of 110,000 hours. All 44 must be in service to operate the accelerator. There are only 9 spares left. The klystrons receive their DC power from the power system originally installed in 1960. Although this power system has been extremely reliable, gas analysis of the insulating oil is indicating age related degradation that will need attention in the next few years. This paper will provide the design details of the new RF and high voltage systems.  
WPAT054 5 MW 805 MHz SNS RF System Experience 3280
 
  • K.A. Young, J.T. Bradley, T.W. Hardek, M.T. Lynch, D. Rees, W. Roybal, P.J. Tallerico, P.A. Torrez
    LANL, Los Alamos, New Mexico
 
  Funding: Work supported by the U.S. DOE.

The RF system for the 805 MHz normal conducting linac of the Spallation Nuetron Source (SNS) accelerator was designed, procured and tested at Los Alamos National Laboratory(LANL) and then installed and commissioned at Oak Ridge National Laboratory (ORNL). The RF power for this room temperature coupled cavity linac (CCL) of SNS accelerator is generated by four pulsed 5 MW peak power klystrons operating with a pulse width of 1.25 mSec and a 60 Hz repetition frequency. The RF power from each klystron is divided and delivered to the CCL through two separate RF windows. The 5 MW RF system advanced the state of the art for simultaneous peak and average power. This paper summarizes the problems encountered, lessons learned and results of the high power testing at LANL of the 5 MW klystrons, 5 MW circulators, 5 MW loads, and 2.5 MW windows.*

*Tom Hardek is now at ORNL.