A   B   C   D   E   F   G   H   I   J   K   L   M   N   O   P   Q   R   S   T   U   V   W   X   Y   Z    

Sullivan, S.

Paper Title Page
ROAB010 Development of a Compact Radiography Accelerator Using Dielectric Wall Accelerator Technology 716
 
  • S. Sampayan, G.J. Caporaso, Y.-J. Chen, S.A. Hawkins, L. Holmes, J.F. McCarrick, S.D. Nelson, C. Nunnally, B.R. Poole, A. Rhodes, M. Sanders, S. Sullivan, L. Wang, J.A. Watson
    LLNL, Livermore, California
 
  Funding: This work was performed under the auspices of the U.S. Department of Energy by University of California Lawrence Livermore National Laboratory under contract No. W-7405-Eng-48.

We are developing of a compact accelerator system primarily intended for pulsed radiography. Design characteristics are an 8 MeV endpoint energy, 2 kA beam current and a cell gradient of approximately 3 MV/m. Overall length of the device is below 3 m. Such compact designs have been made possible with the development of high specific energy dielectrics (> 10 J/cc), specialized transmission line designs and multi-gap laser-triggered low jitter (<1 ns) gas switches. In this geometry, the pulse forming lines, switches and insulator/beam pipe are fully integrated within each cell to form a compact stand-alone stackable unit. We detail our research and modeling to date, recent high voltage test results, and the integration concept of the cells into a radiographic system.