A   B   C   D   E   F   G   H   I   J   K   L   M   N   O   P   Q   R   S   T   U   V   W   X   Y   Z    

Stout, D.

Paper Title Page
TPPT083 RF Conditioning and Testing of Fundamental Power Couplers for SNS Superconducting Cavity Production 4132
 
  • M. Stirbet, G.K. Davis, M. A. Drury, C. Grenoble, J. Henry, G. Myneni, T. Powers, K. Wilson, M. Wiseman
    Jefferson Lab, Newport News, Virginia
  • I.E. Campisi, Y.W. Kang, D. Stout
    ORNL, Oak Ridge, Tennessee
 
  Funding: This work was supported by U.S. DOE contract DE-AC0500R22725.

The Spallation Neutron Source (SNS) makes use of 33 medium beta (0.61) and 48 high beta (0.81) superconducting cavities. Each cavity is equipped with a fundamental power coupler, which should withstand the full klystron power of 550 kW in full reflection for the duration of an RF pulse of 1.3 msec at 60 Hz repetition rate. Before assembly to a superconducting cavity, the vacuum components of the coupler are submitted to acceptance procedures consisting of preliminary quality assessments, cleaning and clean room assembly, vacuum leak checks and baking under vacuum, followed by conditioning and RF high power testing. Similar acceptance procedures (except clean room assembly and baking) were applied for the airside components of the coupler. All 81 fundamental power couplers for SNS superconducting cavity production have been RF power tested at JLAB Newport News and, beginning in April 2004 at SNS Oak Ridge. This paper gives details of coupler processing and RF high power-assessed performances.

 
WPAE005 Status of the Cryogenic System Commissioning at SNS 970
 
  • F. Casagrande, I.E. Campisi, P.A. Gurd, D.R. Hatfield, M.P. Howell, D. Stout, W.H. Strong
    ORNL, Oak Ridge, Tennessee
  • D. Arenius, J.C. Creel, K. Dixon, V. Ganni, P.K. Knudsen
    Jefferson Lab, Newport News, Virginia
 
  Funding: SNS is managed by UT-Battelle, LLC, under contract DE-AC05-00OR22725 for the U.S. Department of Energy. SNS is a partnership of six national laboratories: Argonne, Brookhaven, Jefferson, Lawrence Berkeley, Los Alamos and Oak Ridge

The Spallation Neutron Source (SNS) is under construction at Oak Ridge National Laboratory. The cold section of the Linac consists of 81 superconducting radio frequency cavities cooled to 2.1K by a 2400 Watt cryogenic refrigeration system. The major cryogenic system components include warm helium compressors with associated oil removal and gas management, 4.5K cold box, 7000L liquid helium dewar, 2.1K cold box (consisting of 4 stages of cold compressors), gaseous helium storage, helium purification and gas impurity monitoring system, liquid nitrogen storage and the cryogenic distribution transfer line system. The overall system commissioning strategy and status will be presented.

 
WPAT059 High Power RF Test Facility at the SNS 3450
 
  • Y.W. Kang, D.E. Anderson, I.E. Campisi, M. Champion, M.T. Crofford, R.E. Fuja, P.A. Gurd, S. Hasan, K.-U. Kasemir, M.P. McCarthy, D. Stout, J.Y. Tang, A.V. Vassioutchenko, M. Wezensky
    ORNL, Oak Ridge, Tennessee
  • G.K. Davis, M. A. Drury, T. Powers, M. Stirbet
    Jefferson Lab, Newport News, Virginia
 
  RF Test Facility has been completed in the SNS project at ORNL to support test and conditioning operation of RF subsystems and components. The system consists of two transmitters for two klystrons powered by a common high voltage pulsed converter modulator that can provide power to two independent RF systems. The waveguides are configured with WR2100 and WR1150 sizes for presently used frequencies: 402.5 MHz and 805 MHz. Both 402.5 MHz and 805 MHz systems have circulator protected klystrons that can be powered by the modulator capable of delivering 11 MW peak and 1 MW average power. The facility has been equipped with computer control for various RF processing and complete dual frequency operation. More than forty 805 MHz fundamental power couplers for the SNS superconducting linac (SCL) cavitites have been RF conditioned in this facility. The facility provides more than 1000 ft2 floor area for various test setups. The facility also has a shielded cave area that can support high power tests of normal conducting and superconducting accelerating cavities and components.

SNS is managed by UT-Battelle, LLC, under contract DE-AC05-00OR22725 for the U.S. Department of Energy. SNS is a partnership of six national laboratories: Argonne, Brookhaven, Jefferson, Lawrence Berkeley, Los Alamos, and Oak Ridge.

 
WPAT085 4.2 K Operation of the SNS Cryomodules 4173
 
  • I.E. Campisi, S. Assadi, F. Casagrande, M. Champion, C. Chu, S.M. Cousineau, M.T. Crofford, C. Deibele, J. Galambos, P.A. Gurd, D.R. Hatfield, M.P. Howell, D.-O. Jeon, Y.W. Kang, K.-U. Kasemir, Z. Kursun, H. Ma, M.F. Piller, D. Stout, W.H. Strong, A.V. Vassioutchenko, Y. Zhang
    ORNL, Oak Ridge, Tennessee
 
  Funding: SNS is managed by UT-Battelle, LLC, under contract DE-AC05-00OR22725 for the U.S. Department of Energy. SNS is a partnership of six national laboratories: Argonne, Brookhaven, Jefferson, Lawrence Berkeley, Los Alamos and Oak Ridge.

The Spallation Neutron Source being built at the Oak Ridge National Laboratory employs eighty one 805 MHz superconducting cavities operated at 2.1 K for the H- beam to gain energy in the main linac from 187 MeV to about 1 GeV. The superconducting cavities and cryomodules with two different values of beta .61 and .81 have been designed and constructed at Jefferson Lab for operation at 2.1 K with unloaded Q’s in excess of 5x109. To gain experience in testing cryomodules in the SNS tunnel before the final commissioning of the 2.1 K Central Helium Liquefier, integration tests were conducted on a medium beta (.61) cryomodule at 4.2 K. This is the first time that a superconducting cavity system specifically designed for 2.1 K operation has been extensively tested at 4.2 K without superfluid helium. Even at 4.2 K it was possible to test all of the functional properties of the cryomodule and of the cavities. In particular, at a nominal BCS Qo˜7x108, simultaneous pulse operation of all three cavities in the cryomodule was achieved at accelerating gradients in excess of 12 MV/m. These conditions were maintained for several hours at a repetition rate of 30 pps. Details of the tests will be presented and discussed.

 
RPPT071 Installation of the Spallation Neutron Source (SNS) Superconducting Linac 3838
 
  • D. Stout, I.E. Campisi, F. Casagrande, R.I. Cutler, D.R. Hatfield, M.P. Howell, T. Hunter, R. Kersevan, P. Ladd, W.H. Strong
    ORNL, Oak Ridge, Tennessee
 
  Funding: SNS is managed by UT-Battelle, LLC, under contract DE-AC05-00OR22725 for the U.S. Department of Energy. SNS is a partnership of six national laboratories: Argonne, Brookhaven, Jefferson, Lawrence Berkeley, Los Alamos and Oak Ridge.

The Spallation Neutron Source (SNS) cold linac consists of 11 medium beta (0.61) and 12 high beta (0.81) superconducting RF cryomodules, 32 intersegment quadrupole magnet/diagnostics stations, 9 spool beampipes for future upgrade cryomodules, and two differential pumping stations on either side of the linac. The cryomodules and spool beampipes were designed and manufactured by Jefferson Laboratory, and the quadrupole magnets and beam position monitors were designed and furnished by Los Alamos National Laboratory. The remaining items were designed by ORNL. At present we are installing and testing the cold linac. Experience gained during installation will be presented. The performance in terms of mechanical and cryogenic systems will be described.

 
RPPT070 Status Report on the Installation of the Warm Sections for the Superconducting Linac at the SNS 3828
 
  • R. Kersevan, D.P. Briggs, I.E. Campisi, J.A. Crandall, D.L. Douglas, T. Hunter, P. Ladd, C. Luck, R.C. Morton, K.S. Russell, D. Stout
    ORNL, Oak Ridge, Tennessee
 
  Funding: SNS is managed by UT-Battelle, under contract DE-AC05-00OR22725 for the U.S. Department of Energy. SNS is a partnership of six national laboratories: Argonne, Brookhaven, Jefferson, Lawrence Berkeley and Oak Ridge.

The SNS superconducting linac (SCL) consists of 23 cryomodules (CMs), with possibly 9 additional CMs being added for future energy upgrade from 1 GeV to 1.3 GeV. A total of 32 warm sections separate the comparatively short CMs, and this allows a CM exchange within 48 hours, in order to meet demanding beam availability specifications. The 32 warm section chambers are installed between each pair of CMs, with each section containing a quadrupole doublet, beam diagnostics, and pumping. The chambers are approximately 1.6 m long, have one bellow installed at each end for alignment, and are pumped by one ion-pump. The preparation and installation of these chambers must be made under stringent clean and particulate-free conditions, in order to ensure that the performance of the SCL CMs is not compromised. This paper will discuss the development of the cleaning, preparation, and installation procedures that have been adopted for the warm sections, and the vacuum performance of this system.