A   B   C   D   E   F   G   H   I   J   K   L   M   N   O   P   Q   R   S   T   U   V   W   X   Y   Z    

Semenov, A.

Paper Title Page
TPAE061 Experimental Investigation of an X-Band Tunable Dielectric Accelerating Structure 3529
 
  • A. Kanareykin
    Euclid TechLabs, LLC, Solon, Ohio
  • W. Gai, J.G. Power
    ANL, Argonne, Illinois
  • S.F. Karmanenko, A. Semenov
    Eltech University, St. Petersburg
  • E. Nenasheva
    Ceramics Ltd., St. Petersburg
  • P. Schoessow
    Tech-X, Boulder, Colorado
 
  Funding: U.S. Department of Energy.

Experimental study of a new scheme to tune the resonant frequency for dielectric based accelerating structure (driven either by the wakefield of a beam or an external rf source) is underway. The structure consists of a single layer of conventional dielectric surrounded by a very thin layer of ferroelectric material situated on the outside. Carefully designed electrodes are attached to a thin layer of ferroelectric material. A DC bias can be applied to the electrodes to change the permittivity of the ferroelectric layer and therefore, the dielectric overall resonant frequency can be tuned. In this paper, we present the test results for an 11.424 GHz rectangular DLA prototype structure that the ferroelectric material's dielectric constant of 500 and show that a frequency tuning range of 2% can be achieved. If successful, this scheme would compensate for structure errors caused by ceramic waveguide machining tolerances and dielectric constant heterogeneity.

 
MPPP015 Operational Performance of a Bunch by Bunch Digital Damper in the Fermilab Main Injector 1440
 
  • P. Adamson, P. Adamson
    UCL, London
  • B. Ashmanskas, G.W. Foster, S. U. Hansen, A. Marchionni, D.J. Nicklaus, A. Semenov, D. Wildman
    Fermilab, Batavia, Illinois
  • H. Kang
    Stanford University, Stanford, Califormia
 
  We have implemented a transverse and longitudinal bunch by bunch digital damper system in the Fermilab Main Injector, using a single digital board for all 3 coordinates. The system has been commissioned over the last year, and is now operational in all MI cycles, damping beam bunched at both 53MHz and 2.5MHz. We describe the performance of this system both for collider operations and high-intensity running for the NuMI project.  
WPAE029 Tevatron Beam-beam Compensation Project Progress 2083
 
  • V.D. Shiltsev, R.J. Hively, V. Kamerdzhiev, A. Klebaner, G.F. Kuznetsov, A. Martinez, H. Pfeffer, G.W. Saewert, A. Semenov, D. Wolff, X. Zhang
    Fermilab, Batavia, Illinois
  • K. Bishofberger
    UCLA, Los Angeles, California
  • I. Bogdanov, E. Kashtanov, S. Kozub, V. Sytnik, L. Tkachenko
    IHEP Protvino, Protvino, Moscow Region
  • A.V. Kuzmin, M.A. Tiunov
    BINP SB RAS, Novosibirsk
  • F. Zimmermann
    CERN, Geneva
 
  Funding: Work supported by the Universities Research Assos., Inc., under contract DE-AC02-76CH03000 with the U.S. Dept. of Energy.

The 2nd Tevatron electron lens (TEL2) is under the final phase of development and prepare for the installation in the Tevatron. In this report, we will describe the system and the main upgrades from the TEL1. We will also show the magnetic field measurement results, beam testing and plan for installation. The special operation consideration of the TEL2 under high radiation dose will also be discussed.