A   B   C   D   E   F   G   H   I   J   K   L   M   N   O   P   Q   R   S   T   U   V   W   X   Y   Z    

Rainò, A.

Paper Title Page
RPAP037 Study of the Dynamics in a Linac Booster for Proton Therapy in the 30-62 MeV Energy Range 2494
 
  • V.G. Vaccaro
    Naples University Federico II and INFN, Napoli
  • T. Clauser, A. Rainò
    Bari University, Science Faculty, Bari
  • C. De Martinis, D. Giove, M. Mauri
    INFN/LASA, Segrate (MI)
  • S. Lanzone
    Naples University Federico II, Napoli
  • M.R. Masullo
    INFN-Napoli, Napoli
  • V. Variale
    INFN-Bari, Bari
 
  Funding: Istituto Nazionale di Fisica Nucleare (Naples, Milan and Bari).

Recent results in accelerator physics have shown the feasibility of a coupling scheme between a cyclotron and a linac for proton acceleration. Cyclotrons with energies up to 30 MeV, mainly devoted to radioisotopes production, are available in a large number of medical centres. These two evidences have suggested the idea to study and design a linac booster able to increase the initial proton energy up to the values required for the treatment of tumors, like the ocular ones. Among the challenges in such a project one of the main ones is related to meet the requirement of having sufficient mean current for therapy from a given injection current coming from the cyclotron. In this paper we will review the rationale of the project in order to optimize the transmittance and to minimize the duty-cycle. In this frame we will discuss the basic design of a compact 3GHz linac with a new approach to the cavities used in a SCL (Side Coupled Linac) structure.

 
TPPE029 Measurements of Ion Selective Containment on the RF Charge Breeder Device BRIC 2065
 
  • V. Variale, A. Boggia, T. Clauser, A. Rainò, V. Valentino
    INFN-Bari, Bari
  • P.A. Bak, M. A. Batazova, G.I. Kuznetsov, S. Shiyankov, B.A. Skarbo
    BINP SB RAS, Novosibirsk
  • G. Verrone
    Università e Politecnico di Bari, Bari
 
  Funding: Istituto Nazionale Fisica Nucleare.

The "charge state breeder" BRIC (BReeding Ion Charge) is based on an EBIS source and it is designed to accept Radioactive Ion Beam (RIB) with charge +1, in a slow injection mode, to increase their charge state up to +n. BRIC has been developed at the INFN section of Bari (Italy) during these last 3 years with very limited funds. Now, it has been assembled at the LNL (Italy) where are in progress the first tests as stand alone source. The new feature of BRIC, with respect to the classical EBIS, is given by the insertion, in the ion drift chamber, of a Radio Frequency (RF) Quadrupole aiming to filtering the unwanted elements and then making a more efficient containment of the wanted ions. In this contribution, the measurements of the selective effect on the ion charge state containement of the RF quadrupole field, applied on the ion chamber, will be reported and discussed. The ion charge state analisys of the ions trapped in BRIC seem confirm, as foreseen by simulation results carried out previously, that the selective containment can be obtained. A modification of the collector part to improve the ion extraction of BRIC will be also presented and shortly discussed.

 
WPAT005 A New Tuning Module for Resonant Coupling Structures 973
 
  • V.G. Vaccaro
    Naples University Federico II, Mathematical, Physical and Natural Sciences Faculty, Napoli
  • T. Clauser, A. Rainò, V. Variale
    INFN-Bari, Bari
  • A. D'Elia
    Naples University Federico II and INFN, Napoli
  • C. De Martinis, D. Giove
    INFN-Milano, Milano
  • M.R. Masullo
    INFN-Napoli, Napoli
  • M. Mauri
    INFN/LASA, Segrate (MI)
 
  In order to have efficient particle acceleration it is fundamental that the particles experience, in the accelerating gap, field amplitudes as uniform and as high as possible from gap to gap. Because of the unavoidable fabrication errors, an accelerating structure, when assembled, exhibits field values lower than the nominal ones and/or not uniform. All the usual procedures developed in order to adjust the parameter deviations responsible of the malfunction of these structures, are based on field amplitude measurements, by using the bead pull technique, which is a very invasive technique. In this paper the philosophy is reversed: it is assumed that all the information can be got by Sounding the Modes of the whole System (SMS) and correct the deviation of each frequency mode from its nominal value by means of an appropriate tuning of the cavities: resorting to a perturbative technique applied to a circuit model representing this kind of structures, it is possible to calculate the amount of tuning to give to the cavities. It will be shown that a very good equalization and maximization of the fields in the cavities can be achieved by using this technique.