A   B   C   D   E   F   G   H   I   J   K   L   M   N   O   P   Q   R   S   T   U   V   W   X   Y   Z    

Petrosyan, G.M.

Paper Title Page
TPAE001 Experiments on Wake Field Acceleration in Plasma and the Program of the Further Works in YerPhI 752
 
  • M.L. Petrosyan, M. Akopov, Y.A. Garibyan, E.M. Laziev, R.A. Melikian, Y. Nazaryan, M.K. Oganesyan, G.M. Petrosyan, L.M. Petrosyan, V.S. Pogosyan, G.K. Tovmasyan
    YerPhI, Yerevan
 
  Funding: ISTC, Project A-405.

The use of wake field acceleration basically is aimed to obtaining of high acceleration rate in comparison with traditional methods of acceleration. Meantime in the last years in YerPhI it was offered to use wake field acceleration for acceleration of high-current electron bunches on energy about 100 MeV. Experimental installation for research of formation of high-current electron bunches of the given configuration, necessary for wake field acceleration and acceleration of these bunches in plasma is created. The installation is intended for acceleration of electron bunches with a current of few tens amperes and up to energy 1-2 MeV. For excitation of wake waves in plasma the electron accelerator of direct action with use of high-voltage pulse transformer is used. Results of researches have revealed some properties of formation of high-current bunches, especially restrictions of a electron current because of space charge effects at sub-picoseconds duration of bunches. The basic parameters of the wake field acceleration project on energy about 100 MeV are given, taking into account results of researches on experimental installation.

 
FPAT046 RF Control System for the DESY VUV-FEL Linac 2899
 
  • V. Ayvazyan, G.M. Petrosyan, K. Rehlich, S. Simrock, P. Vetrov
    DESY, Hamburg
 
  In the RF system for the Vacuum Ultraviolet Free Electron Laser (VUV-FEL) Linac each klystron supplies RF power to up to 32 cavities. The superconducting cavities are operated in pulsed mode and high accelerating gradients close to the performance limit. The RF control of the cavity fields to the level of 1·10-4 for amplitude and 0.1 degree for phase however presents a significant technical challenge due to the narrow bandwidth of the cavities which results in high sensitivity to perturbations of the resonance frequency by mechanical vibrations (microphonics) and Lorentz force detuning. A digital RF control system has been developed for the VUV-FEL which will demonstrate the required control performance. Presently the Linac is being commissioned, and this effort provides the first full integrated test in the accelerator, including cryogenics, RF, beam transport, and beam diagnostics. The RF control system design and objectives are discussed and compared to the measured performance during the first stage of the VUV-FEL Linac - TESLA Test Facility. Hardware/software design and operational challenges experienced for RF control are presented.