A   B   C   D   E   F   G   H   I   J   K   L   M   N   O   P   Q   R   S   T   U   V   W   X   Y   Z    

Parker, B.

Paper Title Page
TOAA010 Serpentine Coil Topology for BNL Direct Wind Superconducting Magnets 737
 
  • B. Parker, J. Escallier
    BNL, Upton, Long Island, New York
 
  Funding: Work supported by the U.S. Department of Energy under contract DE-AC-02-98-CH10886.

BNL direct wind technology, with the conductor pattern laid out without need for extra tooling (no collars, coil presses etc.) began with RHIC corrector production. RHIC patterns were wound flat and then wrapped on cylindrical support tubes. Later for the HERA-II IR magnets we improved conductor placement precision by winding directly on a support tube. To meet HERA-II space and field quality goals took sophisticated coil patterns, (some wound on tapered tubes). We denote such patterns, topologically equivalent to RHIC flat windings, "planar patterns." Multi-layer planar patterns run into trouble because it is hard to wind across existing turns and magnet leads get trapped at poles. So we invented a new "Serpentine" winding style, which goes around 360 degrees while the conductor winds back and forth on the tube. To avoid making solenoidal fields, we wind Serpentine layers in opposite handed pairs. With a Serpentine pattern each turn can have the same projection on the coil axis and integral field harmonics then closely follow the 2D cross section. This and other special Serpentine coils properties are discussed in this paper and applied to a variety of direct wind magnet projects.

 
TPPP045 Interaction Region Design for the Electron-Ion Collider eRHIC 2893
 
  • C. Montag, B. Parker, S. Tepikian
    BNL, Upton, Long Island, New York
  • D. Wang
    MIT, Middleton, Massachusetts
 
  Funding: Work performed under the auspices of the U.S. Department of Energy.

To facilitate the study of collisions between 10 GeV polarized electrons and 100 GeV/u heavy ions or 250 GeV polarized protons at high luminosities, adding a 10 GeV electron storage ring to the existing RHIC complex has been proposed. The interaction region of this electron-ion collider eRHIC has to provide the required low-beta focusing, while simultaneously accomodating the synchrotron radiation fan generated by beam separation close to the interaction point, which is particularly challenging. The latest design status of the eRHIC interaction region is presented.

 
TOAA006 Development of Superconducting Combined Function Magnets for the Proton Transport Line for the J-PARC Neutrino Experiments 495
 
  • T. Nakamoto, Y. Ajima, Y. Fukui, N. Higashi, A. Ichikawa, N. Kimura, T. Kobayashi, Y. Makida, T. Ogitsu, H. Ohhata, T. Okamura, K. Sasaki, M. Takasaki, K. Tanaka, A. Terashima, T. Tomaru, A. Yamamoto
    KEK, Ibaraki
  • M. Anerella, J. Escallier, G. Ganetis, R.C. Gupta, M. Harrison, A.K. Jain, J.F. Muratore, B. Parker, P. Wanderer
    BNL, Upton, Long Island, New York
  • T. Fujii, E. Hashiguchi, T. Kanahara, T. Orikasa
    Toshiba, Yokohama
  • Y. Iwamoto
    JAERI, Ibaraki-ken
  • T. Obana
    GUAS/AS, Ibaraki
 
  A second generation of long-baseline neutrino oscillation experiments has been proposed as one of the main projects at J-PARC jointly built by JAERI and KEK. Superconducting combined function magnets, SCFMs, will be utilized for the 50 GeV, 750 kW proton beam line for the neutrino experiment and an R&D program is in underway at KEK. The magnet is designed to provide a combined function of a dipole field of 2.6 T with a quadrupole field of 19 T/m in a coil aperture of 173.4 mm. A series of 28 magnets in the beam line will be operated DC in supercritical helium cooling below 5 K. A design feature of the SCFM is the left-right asymmetry of the coil cross section: current distributions for superimposed dipole- and quadrupole- fields are combined in a single layer coil. Another design feature is the adoption of glass-fiber reinforced phenolic plastic spacers to replace the conventional metallic collars. To evaluate this unique design, fabrication of full-scale prototype magnets is in progress at KEK and the first prototype will be tested at cold soon. This paper will report the development of the SCFMs.  
TPPP022 The eRHIC Ring-Ring Collider Design 1766
 
  • F. Wang, M. Farkhondeh, W.A. Franklin, W. Graves, R. Milner, C. Tschalaer, D. Wang, A. Zolfaghari, T. Zwart, J. van der Laan
    MIT, Middleton, Massachusetts
  • D.P. Barber
    DESY, Hamburg
  • J. Beebe-Wang, A. Deshpande, V. Litvinenko, W.W. MacKay, C. Montag, S. Ozaki, B. Parker, S. Peggs, V. Ptitsyn, T. Roser, S. Tepikian, D. Trbojevic
    BNL, Upton, Long Island, New York
 
  The eRHIC ring-ring collider is the main design option of the future lepton-ion collider at Brookhaven National Laboratory. We report the revisions of the ring-ring collider design features to the baseline design presented in the eRHIC Zeroth Design Report (ZDR). These revisions have been made during the past year. They include changes of the interaction region which are required from the modifications in the design of the main detector. They also include changes in the lepton storage ring for high current operations as a result of better understandings of beam-beam interaction effects. The updated collider luminosity and beam parameters also take into account a more accurate picture of current and future operational aspects of RHIC.  
TPPP043 ERL Based Electron-Ion Collider eRHIC 2768
 
  • V. Litvinenko, L. Ahrens, M. Bai, J. Beebe-Wang, I. Ben-Zvi, M. Blaskiewicz, J.M. Brennan, R. Calaga, X.Y. Chang, A.V. Fedotov, W. Fischer, D. Kayran, J. Kewisch, W.W. MacKay, C. Montag, B. Parker, S. Peggs, V. Ptitsyn, T. Roser, A. Ruggiero, T. Satogata, B. Surrow, S. Tepikian, D. Trbojevic, V. Yakimenko, S.Y. Zhang
    BNL, Upton, Long Island, New York
  • A. Deshpande
    Stony Brook University, Stony Brook
  • M. Farkhondeh
    MIT, Middleton, Massachusetts
 
  Funding: Work performed under Contract Number DE-AC02-98CH10886 with the auspices of the US Department of Energy.

We present the designs of a future polarized electron-hadron collider, eRHIC* based on a high current super-conducting energy-recovery linac (ERL) with energy of electrons up to 20 GeV. We plan to operate eRHIC in both dedicated (electron-hadrons only) and parallel(with the main hadron-hadron collisions) modes. The eRHIC has very large tunability range of c.m. energies while maintaining very high luminosity up to 1034 cm-2 s-1 per nucleon. Two of the most attractive features of this scheme are full spin transparency of the ERL at all operational energies and the capability to support up to four interaction points. We present two main layouts of the eRHIC, the expected beam and luminosity parameter, and discuss the potential limitation of its performance.

*http://www.agsrhichome.bnl.gov/eRHIC/, Appendix A: Linac-Ring Option.

 
RPPP017 Compact Superconducting Final Focus Magnet Options for the ILC 1569
 
  • B. Parker, M. Anerella, J. Escallier, M. Harrison, P. He, A.K. Jain, A. Marone, K.-C. Wu
    BNL, Upton, Long Island, New York
  • T.W. Markiewicz, T.V.M. Maruyama, Y. Nosochkov, A. Seryi
    SLAC, Menlo Park, California
 
  Funding: Work supported by the U.S. Department of Energy under contracts DE-AC-02-98-CH10886 and DE-AC02-76SF00515.

We present a compact superconducting final focus (FF) magnet system for the ILC based on recent BNL direct wind technology developments. Direct wind gives an integrated coil prestress solution for small transverse size coils. With beam crossing angles more than 15 mr, disrupted beam from the IP passes outside the coil while incoming beam is strongly focused. A superconducting FF magnet is adjustable to accommodate collision energy changes, i.e. energy scans and low energy calibration runs. A separate extraction line permits optimization of post IP beam diagnostics. Direct wind construction allows adding separate coils of arbitrary multipolarity (such as sextupole coils for local chromaticity correction). In our simplest coil geometry extracted beam sees significant fringe field. Since the fringe field affects the extracted beam, we also study advanced configurations that give either dramatic fringe field reduction (especially critical for gamma-gamma colliders) or useful quadrupole focusing on the outgoing beam channel. We present prototype coil winding test results and discuss our progress toward an integrated FF solution that addresses important machine detector interface issues.

 
RPPP030 Design of ILC Extraction Line for 20 mrad Crossing Angle 2134
 
  • Y. Nosochkov, K. C. Moffeit, A. Seryi, M. Woods
    SLAC, Menlo Park, California
  • R. Arnold
    University of Massachusetts, Amherst
  • W.P. Oliver
    Tufts University, Medford, Massachusetts
  • B. Parker
    BNL, Upton, Long Island, New York
  • E.T. Torrence
    University of Oregon, Eugene, Oregon
 
  Funding: Work supported by the Department of Energy Contract DE-AC02-76SF00515.

One of the two ILC Interaction Regions will have a large horizontal crossing angle which would allow to extract the spent beams in a separate beam line. In this paper, the extraction line design for 20 mrad crossing angle is presented. This beam line transports the primary e+/e- and beamstrahlung photon beams from the IP to a common dump, and includes diagnostic section for energy and polarization measurements. The optics is designed for a large energy acceptance to minimize losses in the low energy tail of the disrupted beam. The extraction optics, diagnostic instrumentation and particle tracking simulations are described.