A   B   C   D   E   F   G   H   I   J   K   L   M   N   O   P   Q   R   S   T   U   V   W   X   Y   Z    

Ohgaki, H.

Paper Title Page
TPPE048 The Injection System of SAGA Light Source 3007
 
  • Y. Iwasaki, S. Koda, T. Okajima, Y. Takabayashi, T. Tomimasu, K. Yoshida
    Saga Synchrotron Light Source, Industry Promotion Division, Saga City
  • H. Ohgaki
    Kyoto IAE, Kyoto
 
  Saga light Source is a 1.4-GeV electron storage ring with a circumference of 75.6m. The injector is a 250-MeV linac producing 1 ms macro-pulse with a peak current of 12mA and repetition rate of 1Hz. The output beam from the linac is transported though a transport line, and injected into the ring though a septum magnet with a bending angle of 20-degree. The transport line consists of two bending magnets, two quadrupole doublelets, and a quadrupole singlet. The bump orbit is formed by four kicker magnets, two of which are installed at both sides of septum magnet, and other two are positioned apart by one magnet cell of the ring. They are excited by sinusoidal electric currents with a half width of 0.5 ms. The beam optics for the injection trajectory is computed and shown at control room, the parameters for which are provided directly from the power supply control server PC. The operator is able to see real-time result of the beam trajectory calculation. This tool is quite effective to optimize the magnets parameter setting. The commissioning of the light source was started in August 2004, and 250-MeV electrons ware stored first time on November 2004.  
RPAE006 Feasibility Study on Introducing a Superconducting Wiggler to Saga Light Source 1021
 
  • S. Koda, Y. Iwasaki, T. Okajima, H. Setoyama, Y. Takabayashi, T. Tomimasu, K. Yoshida
    Saga Synchrotron Light Source, Industry Promotion Division, Saga City
  • H. Ohgaki
    Kyoto IAE, Kyoto
  • M. Torikoshi
    NIRS, Chiba-shi
 
  Saga light source (SAGA-LS) is the synchrotron radiation facility, which consists of 250 MeV electron linac and 1.4 GeV storage ring. We have a plan to introduce an existing superconducting wiggler, which has been developed for other project by National Institute of Radiological Sciences. The superconducting wiggler consists of a main pole of 7T and two side poles of 4T. Each pole is composed of a racetrack-shaped coil and an iron core. We have examined the effects of the wiggler on the beam optics when it is introduced into SAGA-LS. The distribution of multipole components in the planes perpendicular to the electron orbit, which is deformed by the wiggler fields, have been calculated using magnetic field calculation code RADIA. Then the lattice function and the dynamic aperture of the ring have been calculated by the lattice calculation code SAD. The results show that the tune shift due to the quadrupole component of the wiggler field is as large as to make horizontal beam orbit unstable. The dynamic aperture after the tune correction becomes small by about 20%. These effects due to multipole field are considered to be tolerable for the SAGA-LS.  
RPAE078 Commissioning of SAGA Light Source 4021
 
  • T. Tomimasu, Y. Iwasaki, S. Koda, Y. Takabayashi, K. Yoshida
    Saga Synchrotron Light Source, Industry Promotion Division, Saga City
  • H. Ohgaki
    Kyoto IAE, Kyoto
  • H. Toyokawa, M.Y. Yasumoto
    AIST, Ibaraki
 
  The SAGA Light Source (SAGA-LS) consists of a 250-MeV electron linac injector and an eight-hold symmetry 1.4-GeV storage ring with eight double-bend (DB) cell and eight 2.93-m long straight sections. The DB cell structure with a distributed dispersion system was chosen to produce a compact ring of 75.6-m long circumference. The machine construction begun September 29, 2003. The ring magnets of steel laminated structure, vacuum chambers made of aluminum alloy, pumping systems and four temperature controlled cooling water systems for the linac accelerating wave guides etc. were installed in March, 2004. The injector, a 500-MHz ring rf damped cavity, rf klystrons, beam transport systems for injection and their controlled systems were installed in July, 2004. The commissioning begun August 25, 2004. A 250-MeV beam was accelerated on September 29. The beam size is 1-mm in diameter and the energy spread is 0.8 % (FWHM). The first revolution of 250-MeV beam around the ring took place October 22. Beam was stored on November 12. The commissioning continues for beam storage and ramping to 1.4-GeV. We report a brief description of SAGA light source and early commissioning activities.  
FPAT076 PC-LabView Based Control System in SAGA-LS 3976
 
  • H. Ohgaki
    Kyoto IAE, Kyoto
  • Y. Iwasaki, S. Koda, Y. Takabayashi, T. Tomimasu, K. Yoshida
    Saga Synchrotron Light Source, Industry Promotion Division, Saga City
  • H. Toyokawa
    AIST, Ibaraki
 
  A control system for SAGA Synchrotron Light Source (SAGA-LS) has been constructed. SAGA-LS is a small-medium size light source and is run by local government, which means there are a few number of staff in the laboratory. Thus the control system must be simple and robust, while inexpensive, easy to develop and maintain. The basic ideas of the system are 1) using PCs to build a low cost control system, 2) using off-shelf devices, FieldPoint (National Instrument) and PLCs, (FA-M3, Yokogawa), for robust and replaceable system, 3) using LabView for a quick in-house system development, 4) using channel access protocol between server and client to transparent from regular EPICS utilities, 5) using ActiveX CA to emulate the CA protocol. About 1,000 PVs are employed to control the magnet power supplies, the RF control sub-system, vacuum monitors, BPM data and several LCW data. The system has been operated and tuned at the beginning of the commissioning, spring 2004. MySQL database system also archives data to assist daily operation and to display the trend chart of the machine. The database applications developed by LabView, too.